» Articles » PMID: 38843841

A CD36-dependent Non-canonical Lipid Metabolism Program Promotes Immune Escape and Resistance to Hypomethylating Agent Therapy in AML

Overview
Journal Cell Rep Med
Publisher Cell Press
Date 2024 Jun 6
PMID 38843841
Authors
Affiliations
Soon will be listed here.
Abstract

Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.

Citing Articles

Recent trends in research on the role of cholesterol in leukemia: a bibliometric and visualization study.

Lv H, Lu K, Wang X, Zhang Y, Zhuang M, Li J Front Immunol. 2025; 16:1511827.

PMID: 39917295 PMC: 11799240. DOI: 10.3389/fimmu.2025.1511827.


Regulation of pattern recognition receptor signaling by palmitoylation.

Li X, Hu X, You H, Zheng K, Tang R, Kong F iScience. 2025; 28(2):111667.

PMID: 39877903 PMC: 11772949. DOI: 10.1016/j.isci.2024.111667.


Unraveling lipid metabolism for acute myeloid leukemia therapy.

OBrien C, Jones C Curr Opin Hematol. 2024; 32(2):77-86.

PMID: 39585293 PMC: 11789610. DOI: 10.1097/MOH.0000000000000853.


Application and research progress of single cell sequencing technology in leukemia.

Xie D, An B, Yang M, Wang L, Guo M, Luo H Front Oncol. 2024; 14:1389468.

PMID: 39267837 PMC: 11390353. DOI: 10.3389/fonc.2024.1389468.

References
1.
Pando M, Verma I . Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J Biol Chem. 2000; 275(28):21278-86. DOI: 10.1074/jbc.M002532200. View

2.
Zhang T, Yang J, Vaikari V, Beckford J, Wu S, Akhtari M . Apolipoprotein C2 - CD36 Promotes Leukemia Growth and Presents a Targetable Axis in Acute Myeloid Leukemia. Blood Cancer Discov. 2020; 1(2):198-213. PMC: 7494214. DOI: 10.1158/2643-3230.BCD-19-0077. View

3.
Yin N, Zhang H, Ye R, Dong M, Lin J, Zhou H . Fluvastatin Sodium Ameliorates Obesity through Brown Fat Activation. Int J Mol Sci. 2019; 20(7). PMC: 6479292. DOI: 10.3390/ijms20071622. View

4.
Farge T, Saland E, De Toni F, Aroua N, Hosseini M, Perry R . Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017; 7(7):716-735. PMC: 5501738. DOI: 10.1158/2159-8290.CD-16-0441. View

5.
Aurelius J, Thoren F, Akhiani A, Brune M, Palmqvist L, Hansson M . Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood. 2012; 119(24):5832-7. PMC: 3418695. DOI: 10.1182/blood-2011-11-391722. View