6.
Hall K, Lee T, Aguilar M
. The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit. 2011; 24(1):108-18.
DOI: 10.1002/jmr.1032.
View
7.
Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M
. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb Drug Resist. 2018; 24(6):747-767.
DOI: 10.1089/mdr.2017.0392.
View
8.
Wood T, Zeronian M, Buijs N, Bertheussen K, Abedian H, Johnson A
. Mechanistic insights into the C-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures. Chem Sci. 2022; 13(10):2985-2991.
PMC: 8905900.
DOI: 10.1039/d1sc07190d.
View
9.
Janek T, Rodrigues L, Gudina E, Czyznikowska Z
. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions. Colloids Surf B Biointerfaces. 2016; 146:498-506.
DOI: 10.1016/j.colsurfb.2016.06.055.
View
10.
Wood T, Martin N
. The calcium-dependent lipopeptide antibiotics: structure, mechanism, & medicinal chemistry. Medchemcomm. 2019; 10(5):634-646.
PMC: 6533798.
DOI: 10.1039/c9md00126c.
View
11.
van Rensburg W, Laubscher W, Rautenbach M
. High throughput method to determine the surface activity of antimicrobial polymeric materials. MethodsX. 2022; 8:101593.
PMC: 8720914.
DOI: 10.1016/j.mex.2021.101593.
View
12.
Rossignol T, Znaidi S, Chauvel M, Wesgate R, Decourty L, Menard-Szczebara F
. Ethylzingerone, a Novel Compound with Antifungal Activity. Antimicrob Agents Chemother. 2021; 65(4).
PMC: 8097443.
DOI: 10.1128/AAC.02711-20.
View
13.
Gray D, Wenzel M
. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel). 2020; 9(1).
PMC: 7168178.
DOI: 10.3390/antibiotics9010017.
View
14.
Malanovic N, Lohner K
. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta. 2015; 1858(5):936-46.
DOI: 10.1016/j.bbamem.2015.11.004.
View
15.
Yasir M, Dutta D, Willcox M
. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One. 2019; 14(7):e0215703.
PMC: 6663011.
DOI: 10.1371/journal.pone.0215703.
View
16.
Spathelf B, Rautenbach M
. Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. Bioorg Med Chem. 2009; 17(15):5541-8.
DOI: 10.1016/j.bmc.2009.06.029.
View
17.
Casas-Hinestroza J, Bueno M, Ibanez E, Cifuentes A
. Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Anal Chim Acta. 2019; 1081:32-50.
DOI: 10.1016/j.aca.2019.06.029.
View
18.
Zhong C, Zhang F, Zhu N, Zhu Y, Yao J, Gou S
. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur J Med Chem. 2021; 212:113138.
DOI: 10.1016/j.ejmech.2020.113138.
View
19.
Meincken M, Holroyd D, Rautenbach M
. Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob Agents Chemother. 2005; 49(10):4085-92.
PMC: 1251503.
DOI: 10.1128/AAC.49.10.4085-4092.2005.
View
20.
Heise P, Liu Y, Degenkolb T, Vogel H, Schaberle T, Vilcinskas A
. Antibiotic-Producing Beneficial Bacteria in the Gut of the Burying Beetle . Front Microbiol. 2019; 10:1178.
PMC: 6563848.
DOI: 10.3389/fmicb.2019.01178.
View