» Articles » PMID: 38841205

Data-driven Design of High Pressure Hydride Superconductors Using DFT and Deep Learning

Overview
Journal Mater Futur
Date 2024 Jun 6
PMID 38841205
Authors
Affiliations
Soon will be listed here.
Abstract

The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, HS and LaH) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature () of over 900 hydride materials under a pressure range of (0 to 500) GPa, where we found 122 dynamically stable structures with a above MgB (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.

References
1.
Wines D, Xie T, Choudhary K . Inverse Design of Next-Generation Superconductors Using Data-Driven Deep Generative Models. J Phys Chem Lett. 2023; 14(29):6630-6638. DOI: 10.1021/acs.jpclett.3c01260. View

2.
Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L . Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008; 100(13):136406. DOI: 10.1103/PhysRevLett.100.136406. View

3.
Bitzek E, Koskinen P, Gahler F, Moseler M, Gumbsch P . Structural relaxation made simple. Phys Rev Lett. 2006; 97(17):170201. DOI: 10.1103/PhysRevLett.97.170201. View

4.
Somayazulu M, Ahart M, Mishra A, Geballe Z, Baldini M, Meng Y . Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys Rev Lett. 2019; 122(2):027001. DOI: 10.1103/PhysRevLett.122.027001. View

5.
Giannozzi P, Baseggio O, Bonfa P, Brunato D, Car R, Carnimeo I . Quantum ESPRESSO toward the exascale. J Chem Phys. 2020; 152(15):154105. DOI: 10.1063/5.0005082. View