» Articles » PMID: 38839790

A Cell Atlas of the Adult Female Aedes Aegypti Midgut Revealed by Single-cell RNA Sequencing

Overview
Journal Sci Data
Specialty Science
Date 2024 Jun 5
PMID 38839790
Authors
Affiliations
Soon will be listed here.
Abstract

Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.

Citing Articles

Mosquito Cell Atlas: A single-nucleus transcriptomic atlas of the adult mosquito.

Goldman O, DeFoe A, Qi Y, Jiao Y, Weng S, Houri-Zeevi L bioRxiv. 2025; .

PMID: 40060408 PMC: 11888250. DOI: 10.1101/2025.02.25.639765.


Mosquito host background influences microbiome-ZIKV interactions in field and laboratory-reared .

Cansado-Utrilla C, Saldana M, Golovko G, Khanipov K, Wild A, Brettell L bioRxiv. 2025; .

PMID: 39974953 PMC: 11838435. DOI: 10.1101/2025.02.02.636091.


A comprehensive cell atlas of fall armyworm (Spodoptera frugiperda) larval gut and fat body via snRNA-Seq.

Sun C, Shao Y, Iqbal J Sci Data. 2025; 12(1):250.

PMID: 39939604 PMC: 11822134. DOI: 10.1038/s41597-025-04520-z.


A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

Fitzmeyer E, Dutt T, Pinaud S, Graham B, Gallichotte E, Hill J PLoS Pathog. 2025; 21(1):e1012855.

PMID: 39869679 PMC: 11793825. DOI: 10.1371/journal.ppat.1012855.


A single-cell atlas of the midgut during West Nile virus infection.

Fitzmeyer E, Dutt T, Pinaud S, Graham B, Gallichotte E, Hill J bioRxiv. 2024; .

PMID: 39091762 PMC: 11291174. DOI: 10.1101/2024.07.23.603613.

References
1.
Souza-Neto J, Powell J, Bonizzoni M . Aedes aegypti vector competence studies: A review. Infect Genet Evol. 2018; 67:191-209. PMC: 8135908. DOI: 10.1016/j.meegid.2018.11.009. View

2.
Caccia S, Casartelli M, Tettamanti G . The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res. 2019; 377(3):505-525. DOI: 10.1007/s00441-019-03076-w. View

3.
Khoo C, Piper J, Sanchez-Vargas I, Olson K, Franz A . The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiol. 2010; 10:130. PMC: 2877022. DOI: 10.1186/1471-2180-10-130. View

4.
Franz A, Kantor A, Passarelli A, Clem R . Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses. 2015; 7(7):3741-67. PMC: 4517124. DOI: 10.3390/v7072795. View

5.
Taracena M, Bottino-Rojas V, Talyuli O, Walter-Nuno A, Oliveira J, Anglero-Rodriguez Y . Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus. PLoS Negl Trop Dis. 2018; 12(5):e0006498. PMC: 5983868. DOI: 10.1371/journal.pntd.0006498. View