6.
Blin K, Shaw S, Augustijn H, Reitz Z, Biermann F, Alanjary M
. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023; 51(W1):W46-W50.
PMC: 10320115.
DOI: 10.1093/nar/gkad344.
View
7.
Surh Y, Chun K, Cha H, Han S, Keum Y, Park K
. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001; 480-481:243-68.
DOI: 10.1016/s0027-5107(01)00183-x.
View
8.
Zallot R, Oberg N, Gerlt J
. Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Curr Opin Biotechnol. 2021; 69:77-90.
PMC: 8238782.
DOI: 10.1016/j.copbio.2020.12.004.
View
9.
Tang X, Eitel K, Kaysser L, Kulik A, Grond S, Gust B
. A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. Nat Chem Biol. 2013; 9(10):610-5.
DOI: 10.1038/nchembio.1310.
View
10.
Blin K, Shaw S, Kloosterman A, Charlop-Powers Z, van Wezel G, Medema M
. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021; 49(W1):W29-W35.
PMC: 8262755.
DOI: 10.1093/nar/gkab335.
View
11.
Zhao S, Sakai A, Zhang X, Vetting M, Kumar R, Hillerich B
. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. Elife. 2014; 3.
PMC: 4113996.
DOI: 10.7554/eLife.03275.
View
12.
Pruitt R, Joe A, Zhang W, Feng W, Stewart V, Schwessinger B
. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. New Phytol. 2017; 215(2):725-736.
PMC: 5901733.
DOI: 10.1111/nph.14609.
View
13.
Denoel T, Zervosen A, Gerards T, Lemaire C, Joris B, Blanot D
. Stereoselective synthesis of lanthionine derivatives in aqueous solution and their incorporation into the peptidoglycan of Escherichia coli. Bioorg Med Chem. 2014; 22(17):4621-8.
DOI: 10.1016/j.bmc.2014.07.023.
View
14.
van Staden A, Van Zyl W, Trindade M, Dicks L, Smith C
. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol. 2021; 87(14):e0018621.
PMC: 8231447.
DOI: 10.1128/AEM.00186-21.
View
15.
Acedo J, Bothwell I, An L, Trouth A, Frazier C, van der Donk W
. -Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc. 2019; 141(42):16790-16801.
PMC: 6812601.
DOI: 10.1021/jacs.9b07396.
View
16.
Buhl A, Waldon D, Baker C, Johnson G
. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J Invest Dermatol. 1990; 95(5):553-7.
DOI: 10.1111/1523-1747.ep12504905.
View
17.
Men P, Geng C, Zhang X, Zhang W, Xie L, Feng D
. Biosynthesis mechanism, genome mining and artificial construction of echinocandin O-sulfonation. Metab Eng. 2022; 74:160-167.
DOI: 10.1016/j.ymben.2022.10.006.
View
18.
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Zidek A
. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596(7873):590-596.
PMC: 8387240.
DOI: 10.1038/s41586-021-03828-1.
View
19.
Ongey E, Yassi H, Pflugmacher S, Neubauer P
. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett. 2017; 39(4):473-482.
DOI: 10.1007/s10529-016-2279-9.
View
20.
Muttenthaler M, King G, Adams D, Alewood P
. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021; 20(4):309-325.
DOI: 10.1038/s41573-020-00135-8.
View