6.
Paul D, Neely N, Clement M, Riley I, Al-Hegelan M, Phelan M
. Development and validation of an electronic medical record (EMR)-based computed phenotype of HIV-1 infection. J Am Med Inform Assoc. 2017; 25(2):150-157.
PMC: 6381767.
DOI: 10.1093/jamia/ocx061.
View
7.
McGinnis K, Fine M, Sharma R, Skanderson M, Wagner J, Rodriguez-Barradas M
. Understanding racial disparities in HIV using data from the veterans aging cohort 3-site study and VA administrative data. Am J Public Health. 2003; 93(10):1728-33.
PMC: 1448041.
DOI: 10.2105/ajph.93.10.1728.
View
8.
Ridgway J, Mason J, Friedman E, Devlin S, Zhou J, Meltzer D
. Comparison of algorithms for identifying people with HIV from electronic medical records in a large, multi-site database. JAMIA Open. 2022; 5(2):ooac033.
PMC: 9150074.
DOI: 10.1093/jamiaopen/ooac033.
View
9.
Gehrmann S, Dernoncourt F, Li Y, Carlson E, Wu J, Welt J
. Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives. PLoS One. 2018; 13(2):e0192360.
PMC: 5813927.
DOI: 10.1371/journal.pone.0192360.
View
10.
Felsen U, Bellin E, Cunningham C, Zingman B
. Development of an electronic medical record-based algorithm to identify patients with unknown HIV status. AIDS Care. 2014; 26(10):1318-25.
PMC: 4095997.
DOI: 10.1080/09540121.2014.911813.
View
11.
Johnson A, Pollard T, Shen L, Lehman L, Feng M, Ghassemi M
. MIMIC-III, a freely accessible critical care database. Sci Data. 2016; 3:160035.
PMC: 4878278.
DOI: 10.1038/sdata.2016.35.
View
12.
Cartwright D
. ICD-9-CM to ICD-10-CM Codes: What? Why? How?. Adv Wound Care (New Rochelle). 2014; 2(10):588-592.
PMC: 3865615.
DOI: 10.1089/wound.2013.0478.
View
13.
Fasciano N, Cherlow A, Turner B, Thornton C
. Profile of Medicare Beneficiaries With AIDS: Application of an AIDS Casefinding Algorithm. Health Care Financ Rev. 2014; 19(3):1-20.
PMC: 4194542.
View
14.
Yang S, Varghese P, Stephenson E, Tu K, Gronsbell J
. Machine learning approaches for electronic health records phenotyping: a methodical review. J Am Med Inform Assoc. 2022; 30(2):367-381.
PMC: 9846699.
DOI: 10.1093/jamia/ocac216.
View
15.
Haas O, Maier A, Rothgang E
. Machine Learning-Based HIV Risk Estimation Using Incidence Rate Ratios. Front Reprod Health. 2022; 3:756405.
PMC: 9580760.
DOI: 10.3389/frph.2021.756405.
View
16.
Liu Y, Siddiqi K, Cook R, Bian J, Squires P, Shenkman E
. Optimizing Identification of People Living with HIV from Electronic Medical Records: Computable Phenotype Development and Validation. Methods Inf Med. 2021; 60(3-04):84-94.
PMC: 8672443.
DOI: 10.1055/s-0041-1735619.
View
17.
. Human Immunodeficiency Virus (HIV). Transfus Med Hemother. 2016; 43(3):203-22.
PMC: 4924471.
DOI: 10.1159/000445852.
View
18.
Baratloo A, Hosseini M, Negida A, El Ashal G
. Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity. Emerg (Tehran). 2015; 3(2):48-9.
PMC: 4614595.
View
19.
Wang H, Wang B, Zhang X, Feng C
. Relations among sensitivity, specificity and predictive values of medical tests based on biomarkers. Gen Psychiatr. 2021; 34(2):e100453.
PMC: 7949469.
DOI: 10.1136/gpsych-2020-100453.
View
20.
Elliott T, Sanders E, Doherty M, Ndungu T, Cohen M, Patel P
. Challenges of HIV diagnosis and management in the context of pre-exposure prophylaxis (PrEP), post-exposure prophylaxis (PEP), test and start and acute HIV infection: a scoping review. J Int AIDS Soc. 2019; 22(12):e25419.
PMC: 6918508.
DOI: 10.1002/jia2.25419.
View