6.
Liu L, Li M, Zheng Y
. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci. 2023; 24(3).
PMC: 9916850.
DOI: 10.3390/ijms24032407.
View
7.
Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S
. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res. 2011; 39(9):e63.
PMC: 3089491.
DOI: 10.1093/nar/gkr065.
View
8.
Prescott M, Lidster K
. Improving quality of science through better animal welfare: the NC3Rs strategy. Lab Anim (NY). 2017; 46(4):152-156.
DOI: 10.1038/laban.1217.
View
9.
Fleige S, Pfaffl M
. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006; 27(2-3):126-39.
DOI: 10.1016/j.mam.2005.12.003.
View
10.
Liu Q, Tang Y, Huang Y, Wang J, Yang K, Zhang Y
. Insights into male androgenetic alopecia using comparative transcriptome profiling: hypoxia-inducible factor-1 and Wnt/β-catenin signalling pathways. Br J Dermatol. 2022; 187(6):936-947.
PMC: 10087000.
DOI: 10.1111/bjd.21783.
View
11.
Akashi M, Soma H, Yamamoto T, Tsugitomi A, Yamashita S, Yamamoto T
. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A. 2010; 107(35):15643-8.
PMC: 2932591.
DOI: 10.1073/pnas.1003878107.
View
12.
Kudlova N, Slavik H, Duskova P, Furst T, Srovnal J, Bartek J
. An efficient, non-invasive approach for sampling of hair follicles: design and applications in monitoring DNA damage and aging. Aging (Albany NY). 2021; 13(23):25004-25024.
PMC: 8714131.
DOI: 10.18632/aging.203744.
View
13.
Green M, CLAY C, Gibson W, Hughes T, Smith C, Westgate G
. Rapid isolation in large numbers of intact, viable, individual hair follicles from skin: biochemical and ultrastructural characterization. J Invest Dermatol. 1986; 87(6):768-70.
DOI: 10.1111/1523-1747.ep12457348.
View
14.
Watts L, Browne J, Murphy B
. Investigation of a non-invasive method of assessing the equine circadian clock using hair follicle cells. J Circadian Rhythms. 2012; 10(1):7.
PMC: 3514281.
DOI: 10.1186/1740-3391-10-7.
View
15.
Drakulovski P, Locatelli S, Butel C, Pion S, Krasteva D, Mougdi-Pole E
. Use of RNAlater as a preservation method for parasitic coprology studies in wild-living chimpanzees. Exp Parasitol. 2013; 135(2):257-61.
PMC: 3907073.
DOI: 10.1016/j.exppara.2013.07.002.
View
16.
Al-Nuaimi Y, Hardman J, Biro T, Haslam I, Philpott M, Toth B
. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol. 2013; 134(3):610-619.
DOI: 10.1038/jid.2013.366.
View
17.
Naboulsi R, Cieslak J, Headon D, Jouni A, Negro J, Andersson G
. The Enrichment of Specific Hair Follicle-Associated Cell Populations in Plucked Hairs Offers an Opportunity to Study Gene Expression Underlying Hair Traits. Int J Mol Sci. 2023; 24(1).
PMC: 9820680.
DOI: 10.3390/ijms24010561.
View
18.
Wang G, Wang J, Mancianti M, Epstein Jr E
. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell. 2011; 19(1):114-24.
PMC: 3061401.
DOI: 10.1016/j.ccr.2010.11.007.
View
19.
Rieu I, Powers S
. Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell. 2009; 21(4):1031-3.
PMC: 2685626.
DOI: 10.1105/tpc.109.066001.
View
20.
Karstensen J, Vilmann P
. Historical perspective on needle development: From the past to the future. Best Pract Res Clin Gastroenterol. 2022; 60-61:101814.
DOI: 10.1016/j.bpg.2022.101814.
View