6.
Hwang J, Choi E, Park B, Kim G, Shin C, Lee J
. Transcriptome profiling for developmental stages Protaetia brevitarsis seulensis with focus on wing development and metamorphosis. PLoS One. 2023; 18(3):e0277815.
PMC: 9977060.
DOI: 10.1371/journal.pone.0277815.
View
7.
Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J
. De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). Gigascience. 2019; 8(4).
PMC: 6449472.
DOI: 10.1093/gigascience/giz019.
View
8.
Chevrette M, Carlson C, Ortega H, Thomas C, Ananiev G, Barns K
. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun. 2019; 10(1):516.
PMC: 6355912.
DOI: 10.1038/s41467-019-08438-0.
View
9.
. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2024. Nucleic Acids Res. 2023; 52(D1):D18-D32.
PMC: 10767964.
DOI: 10.1093/nar/gkad1078.
View
10.
Du S, Zhang Y, Shen J, Hu H, Zhang J, Shu C
. Alteration of Manure Antibiotic Resistance Genes via Soil Fauna Is Associated with the Intestinal Microbiome. mSystems. 2022; 7(4):e0052922.
PMC: 9426575.
DOI: 10.1128/msystems.00529-22.
View
11.
Ling L, Han X, Li X, Zhang X, Wang H, Zhang L
. A sp. NEAU-HV9: Isolation, Identification, and Potential as a Biocontrol Agent against of Tomato Plants. Microorganisms. 2020; 8(3).
PMC: 7142955.
DOI: 10.3390/microorganisms8030351.
View
12.
Zhang L, Jiao Y, Ling L, Wang H, Song W, Zhao T
. sp. nov., an indole acetic acid-producing actinobacterium isolated from cow dung. Int J Syst Evol Microbiol. 2021; 71(11).
DOI: 10.1099/ijsem.0.005099.
View
13.
Crits-Christoph A, Diamond S, Butterfield C, Thomas B, Banfield J
. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature. 2018; 558(7710):440-444.
DOI: 10.1038/s41586-018-0207-y.
View
14.
Wei P, Li Y, Lai D, Geng L, Liu C, Zhang J
. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. Waste Manag. 2020; 114:234-239.
DOI: 10.1016/j.wasman.2020.07.009.
View
15.
Du B, Xuan H, Geng L, Li W, Zhang J, Xiang W
. Microflora for improving the spent mushroom substrate for production. iScience. 2022; 25(11):105307.
PMC: 9589201.
DOI: 10.1016/j.isci.2022.105307.
View
16.
Elshafie H, De Martino L, Formisano C, Caputo L, De Feo V, Camele I
. Chemical Identification of Secondary Metabolites from Rhizospheric Actinomycetes Using LC-MS Analysis: In Silico Antifungal Evaluation and Growth-Promoting Effects. Plants (Basel). 2023; 12(9).
PMC: 10181443.
DOI: 10.3390/plants12091869.
View
17.
Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh S, Indra Arulselvi P
. Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium(VI) toxicity. J Adv Res. 2016; 7(6):839-50.
PMC: 5026708.
DOI: 10.1016/j.jare.2016.08.007.
View
18.
Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H
. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2016; 67(5):1613-1617.
PMC: 5563544.
DOI: 10.1099/ijsem.0.001755.
View
19.
Vargas Gil S, Pastor S, March G
. Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res. 2007; 164(2):196-205.
DOI: 10.1016/j.micres.2006.11.022.
View
20.
Wang K, Gao P, Geng L, Liu C, Zhang J, Shu C
. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome. 2022; 10(1):90.
PMC: 9195238.
DOI: 10.1186/s40168-022-01291-2.
View