6.
Arus-Pous J, Patronov A, Bjerrum E, Tyrchan C, Reymond J, Chen H
. SMILES-based deep generative scaffold decorator for de-novo drug design. J Cheminform. 2021; 12(1):38.
PMC: 7260788.
DOI: 10.1186/s13321-020-00441-8.
View
7.
Hopkins A
. Drug discovery: Predicting promiscuity. Nature. 2009; 462(7270):167-8.
DOI: 10.1038/462167a.
View
8.
Yao L, Evans J, Rzhetsky A
. Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol. 2010; 28(4):161-70.
PMC: 3654551.
DOI: 10.1016/j.tibtech.2010.01.004.
View
9.
Laufkotter O, Sturm N, Bajorath J, Chen H, Engkvist O
. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability. J Cheminform. 2019; 11(1):54.
PMC: 6686534.
DOI: 10.1186/s13321-019-0376-1.
View
10.
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G
. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012; 8(5):e1002503.
PMC: 3349722.
DOI: 10.1371/journal.pcbi.1002503.
View
11.
Probst D, Reymond J
. A probabilistic molecular fingerprint for big data settings. J Cheminform. 2018; 10(1):66.
PMC: 6755601.
DOI: 10.1186/s13321-018-0321-8.
View
12.
Dou L, Zhang Z, Liu D, Qian Y, Zhang Q
. BCM-DTI: A fragment-oriented method for drug-target interaction prediction using deep learning. Comput Biol Chem. 2023; 104:107844.
DOI: 10.1016/j.compbiolchem.2023.107844.
View
13.
Chen X, Yan C, Zhang X, Zhang X, Dai F, Yin J
. Drug-target interaction prediction: databases, web servers and computational models. Brief Bioinform. 2015; 17(4):696-712.
DOI: 10.1093/bib/bbv066.
View
14.
Mahmud S, Chen W, Liu Y, Awal M, Ahmed K, Rahman M
. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques. Brief Bioinform. 2021; 22(5).
PMC: 7989622.
DOI: 10.1093/bib/bbab046.
View
15.
Ezzat A, Wu M, Li X, Kwoh C
. Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinformatics. 2017; 17(Suppl 19):509.
PMC: 5259867.
DOI: 10.1186/s12859-016-1377-y.
View
16.
He Z, Zhang J, Shi X, Hu L, Kong X, Cai Y
. Predicting drug-target interaction networks based on functional groups and biological features. PLoS One. 2010; 5(3):e9603.
PMC: 2836373.
DOI: 10.1371/journal.pone.0009603.
View
17.
Chen W, Chen G, Zhao L, Chen C
. Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences. J Phys Chem A. 2021; 125(25):5633-5642.
DOI: 10.1021/acs.jpca.1c02419.
View
18.
Zhang W, Lin W, Zhang D, Wang S, Shi J, Niu Y
. Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction. Curr Drug Metab. 2018; 20(3):194-202.
DOI: 10.2174/1389200219666180821094047.
View
19.
Lee I, Keum J, Nam H
. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput Biol. 2019; 15(6):e1007129.
PMC: 6594651.
DOI: 10.1371/journal.pcbi.1007129.
View
20.
A Thafar M, Olayan R, Ashoor H, Albaradei S, Bajic V, Gao X
. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform. 2021; 12(1):44.
PMC: 7325230.
DOI: 10.1186/s13321-020-00447-2.
View