6.
Zhang L, Chen X, Zu S, Lu Y
. Characteristics of circulating adaptive immune cells in patients with colorectal cancer. Sci Rep. 2022; 12(1):18166.
PMC: 9616942.
DOI: 10.1038/s41598-022-23190-0.
View
7.
Li Q, Cai S, Li M, Zhou X, Wu G, Kang K
. Natural killer cell exhaustion in lung cancer. Int Immunopharmacol. 2021; 96:107764.
DOI: 10.1016/j.intimp.2021.107764.
View
8.
Mukherjee N, Ji N, Hurez V, Curiel T, Montgomery M, Braun A
. Intratumoral CD56 natural killer cells are associated with improved survival in bladder cancer. Oncotarget. 2018; 9(92):36492-36502.
PMC: 6284861.
DOI: 10.18632/oncotarget.26362.
View
9.
Cichocki F, Grzywacz B, Miller J
. Human NK Cell Development: One Road or Many?. Front Immunol. 2019; 10:2078.
PMC: 6727427.
DOI: 10.3389/fimmu.2019.02078.
View
10.
Huntington N, Cursons J, Rautela J
. The cancer-natural killer cell immunity cycle. Nat Rev Cancer. 2020; 20(8):437-454.
DOI: 10.1038/s41568-020-0272-z.
View
11.
Cui F, Qu D, Sun R, Zhang M, Nan K
. NK cell-produced IFN-γ regulates cell growth and apoptosis of colorectal cancer by regulating IL-15. Exp Ther Med. 2020; 19(2):1400-1406.
PMC: 6966233.
DOI: 10.3892/etm.2019.8343.
View
12.
Tang G, Yuan X, Luo Y, Lin Q, Chen Z, Xing X
. Establishing immune scoring model based on combination of the number, function, and phenotype of lymphocytes. Aging (Albany NY). 2020; 12(10):9328-9343.
PMC: 7288950.
DOI: 10.18632/aging.103208.
View
13.
Orange J, Chehimi J, Ghavimi D, Campbell D, Sullivan K
. Decreased natural killer (NK) cell function in chronic NK cell lymphocytosis associated with decreased surface expression of CD11b. Clin Immunol. 2001; 99(1):53-64.
DOI: 10.1006/clim.2001.5002.
View
14.
Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds P
. Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol. 2014; 178(1):79-85.
PMC: 4360197.
DOI: 10.1111/cei.12392.
View
15.
Jiang H, Jiang J
. Balancing act: the complex role of NK cells in immune regulation. Front Immunol. 2023; 14:1275028.
PMC: 10652757.
DOI: 10.3389/fimmu.2023.1275028.
View
16.
Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag C, Laversanne M
. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023; 72(2):338-344.
DOI: 10.1136/gutjnl-2022-327736.
View
17.
Mota G, Moldovan I, Calugaru A, Hirt M, Kozma E, Galatiuc C
. Interaction of human immunoglobulin G with CD16 on natural killer cells: ligand clearance, FcgammaRIIIA turnover and effects of metalloproteinases on FcgammaRIIIA-mediated binding, signal transduction and killing. Scand J Immunol. 2004; 59(3):278-84.
DOI: 10.1111/j.0300-9475.2004.01398.x.
View
18.
Wang Y, Zhou N, Liu H, Gong X, Zhu R, Li X
. Circulating activated lymphocyte subsets as potential blood biomarkers of cancer progression. Cancer Med. 2020; 9(14):5086-5094.
PMC: 7367640.
DOI: 10.1002/cam4.3150.
View
19.
Abedizadeh R, Majidi F, Khorasani H, Abedi H, Sabour D
. Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev. 2023; 43(2):729-753.
DOI: 10.1007/s10555-023-10158-3.
View
20.
Wagner J, Rosario M, Romee R, Berrien-Elliott M, Schneider S, Leong J
. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017; 127(11):4042-4058.
PMC: 5663359.
DOI: 10.1172/JCI90387.
View