Stockebrand M, Sasani A, Das D, Hornig S, Hermans-Borgmeyer I, Lake H
Front Physiol. 2018; 9:773.
PMID: 30013483
PMC: 6036259.
DOI: 10.3389/fphys.2018.00773.
Ren J, Sherry A, Malloy C
NMR Biomed. 2015; 29(9):1240-8.
PMID: 25943328
PMC: 4673044.
DOI: 10.1002/nbm.3310.
Ren J, Sherry A, Malloy C
Magn Reson Med. 2014; 74(6):1505-14.
PMID: 25469992
PMC: 4792267.
DOI: 10.1002/mrm.25514.
Ren J, Yang B, Sherry A, Malloy C
Magn Reson Med. 2014; 73(4):1359-69.
PMID: 24733433
PMC: 4197187.
DOI: 10.1002/mrm.25256.
Bashir A, Gropler R
NMR Biomed. 2014; 27(6):663-71.
PMID: 24706347
PMC: 4106821.
DOI: 10.1002/nbm.3103.
Early development of arterial spin labeling to measure regional brain blood flow by MRI.
Koretsky A
Neuroimage. 2012; 62(2):602-7.
PMID: 22245338
PMC: 4199083.
DOI: 10.1016/j.neuroimage.2012.01.005.
Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted ³¹P NMR and mass spectrometry.
Nemutlu E, Zhang S, Gupta A, Juranic N, Macura S, Terzic A
Physiol Genomics. 2012; 44(7):386-402.
PMID: 22234996
PMC: 3339850.
DOI: 10.1152/physiolgenomics.00152.2011.
Interpretation of ³¹P NMR saturation transfer experiments: what you can't see might confuse you. Focus on "Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal....
Balaban R, Koretsky A
Am J Physiol Cell Physiol. 2011; 301(1):C12-5.
PMID: 21490314
PMC: 7039274.
DOI: 10.1152/ajpcell.00100.2011.
31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle.
Nabuurs C, Huijbregts B, Wieringa B, Hilbers C, Heerschap A
J Biol Chem. 2010; 285(51):39588-96.
PMID: 20884612
PMC: 3000940.
DOI: 10.1074/jbc.M110.164665.
Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent.
Shiftan L, Neeman M
Contrast Media Mol Imaging. 2006; 1(3):106-12.
PMID: 17193686
PMC: 4035508.
DOI: 10.1002/cmmi.96.
CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart.
Joubert F, Mateo P, Gillet B, Beloeil J, Mazet J, Hoerter J
Mol Cell Biochem. 2004; 256-257(1-2):43-58.
PMID: 14977169
DOI: 10.1023/b:mcbi.0000009858.41434.fc.
Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: a new method of analysis.
Joubert F, Hoerter J, Mazet J
Biophys J. 2001; 81(6):2995-3004.
PMID: 11720970
PMC: 1301764.
DOI: 10.1016/S0006-3495(01)75940-1.
Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes.
Joubert F, Gillet B, Mazet J, Mateo P, Beloeil J, Hoerter J
Biophys J. 2000; 79(1):1-13.
PMID: 10866933
PMC: 1300911.
DOI: 10.1016/s0006-3495(00)76269-2.
Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR.
van Dorsten F, Reese T, Gellerich J, Van Echteld C, Nederhoff M, Muller H
Mol Cell Biochem. 1997; 174(1-2):33-42.
PMID: 9309663
Approaching the multifaceted nature of energy metabolism: inactivation of the cytosolic creatine kinases via homologous recombination in mouse embryonic stem cells.
van Deursen J, Wieringa B
Mol Cell Biochem. 1994; 133-134:263-74.
PMID: 7808458
DOI: 10.1007/BF01267959.
Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
Saks V, Khuchua Z, Vasilyeva E, Belikova OYu , Kuznetsov A
Mol Cell Biochem. 1994; 133-134:155-92.
PMID: 7808453
DOI: 10.1007/BF01267954.
Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H
Biochem J. 1992; 281 ( Pt 1):21-40.
PMID: 1731757
PMC: 1130636.
DOI: 10.1042/bj2810021.