» Articles » PMID: 38794533

Mechanical, Flame-Retardant and Dielectric Properties of Intumescent Flame Retardant/Glass Fiber-Reinforced Polypropylene Through a Novel Dispersed Distribution Mode

Overview
Publisher MDPI
Date 2024 May 25
PMID 38794533
Authors
Affiliations
Soon will be listed here.
Abstract

The application of continuous glass fiber-reinforced polypropylene thermoplastic composites (GF/PP) is limited due to the inadequate flame retardancy of the polypropylene (PP) matrix. Apart from altering the composition of the flame retardants, the distribution modes of flame retardants also impact material performance. In this study, an alternative approach involving non-uniform distribution is proposed, namely, dispersed distribution, in which non-flame-retardant-content layers (NFRLs) and/or low-flame-retardant-content layers (LFRLs) are dispersed among high-flame-retardant-content layers (HFRLs). The mechanical, flame retardant and dielectric properties of GF/PP with intumescent flame retardant (IFR/GF/PP) are investigated comparatively under uniform, gradient, and dispersed distributions of the flame retardants. The results demonstrate that non-uniform distribution exhibits superior flame retardant performance compared to uniform distribution. Dispersed distribution enables IFR/GF/PP to attain enhanced mechanical properties and reduced dielectric constants while maintaining excellent flame-retardant properties.

Citing Articles

Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants.

Li J, Sun Y, Zhang B, Qi G Polymers (Basel). 2024; 16(12).

PMID: 38932031 PMC: 11207497. DOI: 10.3390/polym16121681.

References
1.
Minchenkov K, Vedernikov A, Safonov A, Akhatov I . Thermoplastic Pultrusion: A Review. Polymers (Basel). 2021; 13(2). PMC: 7825514. DOI: 10.3390/polym13020180. View

2.
Laachachi A, Ball V, Apaydin K, Toniazzo V, Ruch D . Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir. 2011; 27(22):13879-87. DOI: 10.1021/la203252q. View

3.
Choi K, Kim J, Kwon T, Kang S, Song J, Park Y . Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Polymers (Basel). 2021; 13(8). PMC: 8071101. DOI: 10.3390/polym13081286. View

4.
Zheng Y, Dong R, Shen J, Guo S . Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone. ACS Appl Mater Interfaces. 2015; 8(2):1371-80. DOI: 10.1021/acsami.5b10246. View

5.
Wu Y, Wu J, Mei C, Yang R, He W, Li X . Thermal and flame-retardant properties of multilayered composites prepared through novel multilayering approach. Environ Res. 2022; 213:113724. DOI: 10.1016/j.envres.2022.113724. View