» Articles » PMID: 38792260

Antiproliferative and Pro-Apoptotic Activity and Tubulin Dynamics Modulation of 1-Benzimidazol-2-yl Hydrazones in Human Breast Cancer Cell Line MDA-MB-231

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2024 May 25
PMID 38792260
Authors
Affiliations
Soon will be listed here.
Abstract

(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC varying from 40 to 60 μM after 48 h and between 13 and 20 μM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity.

Citing Articles

Hydrazones, hydrazones-based coinage metal complexes, and their biological applications.

Tafere D, Gebrezgiabher M, Elemo F, Sani T, Atisme T, Ashebr T RSC Adv. 2025; 15(8):6191-6207.

PMID: 40034805 PMC: 11873977. DOI: 10.1039/d4ra07794f.

References
1.
Uckun F, Cogle C, Lin T, Qazi S, Trieu V, Schiller G . A Phase 1B Clinical Study of Combretastatin A1 Diphosphate (OXi4503) and Cytarabine (ARA-C) in Combination (OXA) for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers (Basel). 2020; 12(1). PMC: 7016810. DOI: 10.3390/cancers12010074. View

2.
Grisham R, Ky B, Tewari K, Chaplin D, Walker J . Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management. Gynecol Oncol Res Pract. 2018; 5:1. PMC: 5756341. DOI: 10.1186/s40661-017-0058-5. View

3.
Kamal A, Reddy T, Vishnuvardhan M, Nimbarte V, Rao A, Srinivasulu V . Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg Med Chem. 2015; 23(15):4608-4623. DOI: 10.1016/j.bmc.2015.05.060. View

4.
Blajeski A, Phan V, Kottke T, Kaufmann S . G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest. 2002; 110(1):91-9. PMC: 151025. DOI: 10.1172/JCI13275. View

5.
Fanale D, Bronte G, Passiglia F, Calo V, Castiglia M, Di Piazza F . Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option?. Anal Cell Pathol (Amst). 2015; 2015:690916. PMC: 4592889. DOI: 10.1155/2015/690916. View