6.
Chen L, Yu F, Shen X, Duan C
. N-CND modified NH-UiO-66 for photocatalytic CO conversion under visible light by a photo-induced electron transfer process. Chem Commun (Camb). 2019; 55(33):4845-4848.
DOI: 10.1039/c9cc02193k.
View
7.
Chong S, Wang T, Cheng L, Lv H, Ji M
. Metal-Organic Framework MIL-101-NH-Supported Acetate-Based Butylimidazolium Ionic Liquid as a Highly Efficient Heterogeneous Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones. Langmuir. 2018; 35(2):495-503.
DOI: 10.1021/acs.langmuir.8b03153.
View
8.
Liu J, Xie Y, Peng C, Yu G, Zhou J
. Molecular Understanding of Laccase Adsorption on Charged Self-Assembled Monolayers. J Phys Chem B. 2017; 121(47):10610-10617.
DOI: 10.1021/acs.jpcb.7b08738.
View
9.
Suo H, Geng X, Sun Y, Zhang L, Yang J, Yang F
. Surface Modification of Magnetic ZIF-90 Nanoparticles Improves the Microenvironment of Immobilized Lipase and Its Application in Esterification. Langmuir. 2022; 38(49):15384-15393.
DOI: 10.1021/acs.langmuir.2c02672.
View
10.
Rodrigues R, Virgen-Ortiz J, S Dos Santos J, Berenguer-Murcia A, Alcantara A, Barbosa O
. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 2019; 37(5):746-770.
DOI: 10.1016/j.biotechadv.2019.04.003.
View
11.
Virgen-Ortiz J, S Dos Santos J, Berenguer-Murcia A, Barbosa O, Rodrigues R, Fernandez-Lafuente R
. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B. 2020; 5(36):7461-7490.
DOI: 10.1039/c7tb01639e.
View
12.
Diao W, Guo L, Ding Q, Gao C, Hu G, Chen X
. Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nat Commun. 2021; 12(1):6886.
PMC: 8617184.
DOI: 10.1038/s41467-021-27226-3.
View
13.
Liang W, Wied P, Carraro F, Sumby C, Nidetzky B, Tsung C
. Metal-Organic Framework-Based Enzyme Biocomposites. Chem Rev. 2021; 121(3):1077-1129.
DOI: 10.1021/acs.chemrev.0c01029.
View
14.
Sojitra U, Nadar S, Rathod V
. Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym. 2016; 157:677-685.
DOI: 10.1016/j.carbpol.2016.10.018.
View
15.
Pencreach G, Baratti J
. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support. Appl Microbiol Biotechnol. 1997; 47(6):630-5.
DOI: 10.1007/s002530050986.
View
16.
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal H
. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. Environ Int. 2019; 124:336-353.
DOI: 10.1016/j.envint.2019.01.011.
View
17.
Bradford M
. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54.
DOI: 10.1016/0003-2697(76)90527-3.
View
18.
Cea M, Gonzalez M, Abarzua M, Navia R
. Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar. J Environ Manage. 2019; 242:171-177.
DOI: 10.1016/j.jenvman.2019.04.013.
View
19.
Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafari Rad A
. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater. 2019; 368:10-20.
DOI: 10.1016/j.jhazmat.2019.01.024.
View
20.
Suo H, Gao Z, Xu L, Xu C, Yu D, Xiang X
. Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater Sci Eng C Mater Biol Appl. 2019; 96:356-364.
DOI: 10.1016/j.msec.2018.11.041.
View