6.
Esfahani H, Jose R, Ramakrishna S
. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications. Materials (Basel). 2017; 10(11).
PMC: 5706185.
DOI: 10.3390/ma10111238.
View
7.
Jia C, Xu Z, Luo D, Xiang H, Zhu M
. Flexible Ceramic Fibers: Recent Development in Preparation and Application. Adv Fiber Mater. 2022; 4(4):573-603.
PMC: 8831880.
DOI: 10.1007/s42765-022-00133-y.
View
8.
Song Y, Zhao F, Li Z, Cheng Z, Huang H, Yang M
. Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane. RSC Adv. 2022; 11(39):23901-23907.
PMC: 9036657.
DOI: 10.1039/d1ra03917b.
View
9.
Apostolopoulou-Kalkavoura V, Munier P, Bergstrom L
. Thermally Insulating Nanocellulose-Based Materials. Adv Mater. 2020; 33(28):e2001839.
PMC: 11468958.
DOI: 10.1002/adma.202001839.
View
10.
Zhang J, Zhang X, Wang L, Zhang J, Liu R, Sun Q
. Fabrication and Applications of Ceramic-Based Nanofiber Materials Service in High-Temperature Harsh Conditions-A Review. Gels. 2023; 9(3).
PMC: 10048250.
DOI: 10.3390/gels9030208.
View
11.
Cheng X, Liu Y, Si Y, Yu J, Ding B
. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat Commun. 2022; 13(1):2637.
PMC: 9098874.
DOI: 10.1038/s41467-022-30435-z.
View
12.
Wang H, Zhang X, Wang N, Li Y, Feng X, Huang Y
. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci Adv. 2017; 3(6):e1603170.
PMC: 5457032.
DOI: 10.1126/sciadv.1603170.
View
13.
Wang F, Dou L, Dai J, Li Y, Huang L, Si Y
. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature-Invariant Superelasticity over One Million Compressions. Angew Chem Int Ed Engl. 2020; 59(21):8285-8292.
DOI: 10.1002/anie.202001679.
View
14.
Zhang X, Wang F, Dou L, Cheng X, Si Y, Yu J
. Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO-AlO Nanofibrous Aerogels with High-Temperature Resistance over 1300 °C. ACS Nano. 2020; 14(11):15616-15625.
DOI: 10.1021/acsnano.0c06423.
View
15.
Lu D, Su L, Wang H, Niu M, Xu L, Ma M
. Scalable Fabrication of Resilient SiC Nanowires Aerogels with Exceptional High-Temperature Stability. ACS Appl Mater Interfaces. 2019; 11(48):45338-45344.
DOI: 10.1021/acsami.9b16811.
View
16.
Si Y, Wang X, Dou L, Yu J, Ding B
. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv. 2018; 4(4):eaas8925.
PMC: 5922795.
DOI: 10.1126/sciadv.aas8925.
View
17.
An L, Wang J, Petit D, Armstrong J, Hanson K, Hamilton J
. An All-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material. Nano Lett. 2020; 20(5):3828-3835.
DOI: 10.1021/acs.nanolett.0c00917.
View
18.
Xie F, Duan Y, Mo G, Huang Q, Huang Z
. Structural Evolution of Polyaluminocarbosilane during the Polymer-Ceramic Conversion Process. Materials (Basel). 2023; 16(11).
PMC: 10254376.
DOI: 10.3390/ma16114172.
View
19.
Xu X, Zhang Q, Hao M, Hu Y, Lin Z, Peng L
. Double-negative-index ceramic aerogels for thermal superinsulation. Science. 2019; 363(6428):723-727.
DOI: 10.1126/science.aav7304.
View
20.
Tong Z, Zhang B, Yu H, Yan X, Xu H, Li X
. SiN Nanofibrous Aerogel with In Situ Growth of SiO Coating and Nanowires for Oil/Water Separation and Thermal Insulation. ACS Appl Mater Interfaces. 2021; 13(19):22765-22773.
DOI: 10.1021/acsami.1c05575.
View