6.
Wu T, Liang Q, Tang L, Tang J, Wang J, Shao B
. Construction of a novel S-scheme heterojunction piezoelectric photocatalyst V-BiOIO/FTCN and immobilization with floatability for tetracycline degradation. J Hazard Mater. 2022; 443(Pt B):130251.
DOI: 10.1016/j.jhazmat.2022.130251.
View
7.
Gong P, He F, Xie J, Fang D
. Catalytic removal of toluene using MnO-based catalysts: A review. Chemosphere. 2023; 318:137938.
DOI: 10.1016/j.chemosphere.2023.137938.
View
8.
Sun S, Wang Y, Zhou L, Wang X, Kang C
. Enhanced degradation mechanism of tetracycline by MnO with the presence of organic acids. Chemosphere. 2021; 286(Pt 1):131606.
DOI: 10.1016/j.chemosphere.2021.131606.
View
9.
Xiao Y, Huo W, Yin S, Jiang D, Zhang Y, Zhang Z
. One-step hydrothermal synthesis of Cu-doped MnO coated diatomite for degradation of methylene blue in Fenton-like system. J Colloid Interface Sci. 2019; 556:466-475.
DOI: 10.1016/j.jcis.2019.08.082.
View
10.
Ma G, Syzgantseva O, Huang Y, Stoian D, Zhang J, Yang S
. A hydrophobic Cu/CuO sheet catalyst for selective electroreduction of CO to ethanol. Nat Commun. 2023; 14(1):501.
PMC: 9889799.
DOI: 10.1038/s41467-023-36261-1.
View
11.
Sun Y, Wang T, Han C, Bai L, Sun X
. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. Bioresour Technol. 2022; 369:128373.
DOI: 10.1016/j.biortech.2022.128373.
View
12.
Lin K, Afzal S, Xu L, Ding T, Li F, Zhang M
. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation. Environ Pollut. 2023; 327:121454.
DOI: 10.1016/j.envpol.2023.121454.
View
13.
Qian W, Huang H, Diao Z, Li H, Liu H, Ye M
. Advanced treatment of dye wastewater using a novel integrative Fenton-like/MnO-filled upward flow biological filter bed system equipped with modified ceramsite. Environ Res. 2020; 194:110641.
DOI: 10.1016/j.envres.2020.110641.
View
14.
Li P, Zhan S, Yao L, Xiong Y, Tian S
. Highly porous α-MnO nanorods with enhanced defect accessibility for efficient catalytic ozonation of refractory pollutants. J Hazard Mater. 2022; 437:129235.
DOI: 10.1016/j.jhazmat.2022.129235.
View
15.
Wang Y, Sun Y, Wang R, Gao M, Xin Y, Zhang G
. Activation of peroxymonosulfate with cobalt embedded in layered δ-MnO for degradation of dimethyl phthalate: Mechanisms, degradation pathway, and DFT calculation. J Hazard Mater. 2023; 451:130901.
DOI: 10.1016/j.jhazmat.2023.130901.
View
16.
Chen L, Wu D, Jiang T, Yin Y, Du W, Chen X
. A novel heterogeneous catalytic system (AC/ZVI/CaO) promotes simultaneous removal of phosphate and sulfamethazine: Performance, mechanism and application feasibility verification. Water Res. 2023; 237:119977.
DOI: 10.1016/j.watres.2023.119977.
View
17.
Lu J, Guo Z, Li M, Dai P, He M, Kang Y
. The increased oxygen vacancy by morphology regulation of MnO for efficient removal of PAHs in aqueous solution. Chemosphere. 2023; 318:137966.
DOI: 10.1016/j.chemosphere.2023.137966.
View
18.
Gu W, Li C, Qiu J, Yao J
. Facile fabrication of flower-like MnO hollow microspheres as high-performance catalysts for toluene oxidation. J Hazard Mater. 2020; 408:124458.
DOI: 10.1016/j.jhazmat.2020.124458.
View
19.
Hsieh M, Su Y, Hsu M, Lin A
. Enhanced MnO oxidation of methotrexate through self-sensitized photolysis. J Hazard Mater. 2022; 438:129494.
DOI: 10.1016/j.jhazmat.2022.129494.
View