6.
Asadi-Golshan R, Razban V, Mirzaei E, Rahmanian A, Khajeh S, Mostafavi-Pour Z
. Sensory and Motor Behavior Evidences Supporting the Usefulness of Conditioned Medium from Dental Pulp-Derived Stem Cells in Spinal Cord Injury in Rats. Asian Spine J. 2018; 12(5):785-793.
PMC: 6147871.
DOI: 10.31616/asj.2018.12.5.785.
View
7.
Ying Y, Huang Z, Tu Y, Wu Q, Li Z, Zhang Y
. A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact Mater. 2022; 22:274-290.
PMC: 9556860.
DOI: 10.1016/j.bioactmat.2022.09.019.
View
8.
Albashari A, He Y, Zhang Y, Ali J, Lin F, Zheng Z
. Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury. ACS Omega. 2020; 5(26):16064-16075.
PMC: 7346236.
DOI: 10.1021/acsomega.0c01379.
View
9.
Hamilton L, Truong M, Bednarczyk M, Aumont A, Fernandes K
. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience. 2009; 164(3):1044-56.
DOI: 10.1016/j.neuroscience.2009.09.006.
View
10.
McCormick J, Huso H
. Stem cells and ethics: current issues. J Cardiovasc Transl Res. 2010; 3(2):122-7.
PMC: 3933367.
DOI: 10.1007/s12265-009-9155-0.
View
11.
Sivanathan K, Gronthos S, Rojas-Canales D, Thierry B, Coates P
. Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev Rep. 2014; 10(3):351-75.
DOI: 10.1007/s12015-014-9495-2.
View
12.
Gnanasegaran N, Govindasamy V, Simon C, Gan Q, Vincent-Chong V, Mani V
. Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur J Clin Invest. 2017; 47(6):403-414.
DOI: 10.1111/eci.12753.
View
13.
Zeng X, Zeng Y, Ma Y, Lu L, Du B, Zhang W
. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 2011; 20(11-12):1881-99.
DOI: 10.3727/096368911X566181.
View
14.
Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M
. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res. 2013; 92(6):524-31.
DOI: 10.1177/0022034513485599.
View
15.
Ezzathkah Bastani N, Kostovski E, Sakhi A, Karlsen A, Carlsen M, Hjeltnes N
. Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients. Arch Phys Med Rehabil. 2012; 93(12):2223-8.e2.
DOI: 10.1016/j.apmr.2012.06.021.
View
16.
Wanner I, Anderson M, Song B, Levine J, Fernandez A, Gray-Thompson Z
. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013; 33(31):12870-86.
PMC: 3728693.
DOI: 10.1523/JNEUROSCI.2121-13.2013.
View
17.
Fehlings M, Tator C
. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 1995; 132(2):220-8.
DOI: 10.1016/0014-4886(95)90027-6.
View
18.
Matsushita T, Lankford K, Arroyo E, Sasaki M, Neyazi M, Radtke C
. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol. 2015; 267:152-64.
DOI: 10.1016/j.expneurol.2015.03.001.
View
19.
Popovich P, Horner P, Mullin B, Stokes B
. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol. 1996; 142(2):258-75.
DOI: 10.1006/exnr.1996.0196.
View
20.
Ankeny D, Lucin K, Sanders V, McGaughy V, Popovich P
. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006; 99(4):1073-87.
DOI: 10.1111/j.1471-4159.2006.04147.x.
View