6.
Wang Z, Grange M, Wagner T, Kho A, Gautel M, Raunser S
. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell. 2021; 184(8):2135-2150.e13.
PMC: 8054911.
DOI: 10.1016/j.cell.2021.02.047.
View
7.
Qadota H, Mayans O, Matsunaga Y, McMurry J, Wilson K, Kwon G
. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Mol Biol Cell. 2016; 27(10):1606-20.
PMC: 4865318.
DOI: 10.1091/mbc.E15-09-0675.
View
8.
Ono S, Lewis M, Ono K
. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol. 2022; 101(2):151215.
PMC: 9081161.
DOI: 10.1016/j.ejcb.2022.151215.
View
9.
Benian G, Tinley T, Tang X, Borodovsky M
. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J Cell Biol. 1996; 132(5):835-48.
PMC: 2120741.
DOI: 10.1083/jcb.132.5.835.
View
10.
Dougherty G, Chopp T, Qi S, Cutler M
. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp Cell Res. 2005; 306(1):168-79.
DOI: 10.1016/j.yexcr.2005.01.025.
View
11.
Timmons L, Fire A
. Specific interference by ingested dsRNA. Nature. 1998; 395(6705):854.
DOI: 10.1038/27579.
View
12.
Moerman D, Williams B
. Sarcomere assembly in C. elegans muscle. WormBook. 2007; :1-16.
PMC: 4781162.
DOI: 10.1895/wormbook.1.81.1.
View
13.
Lecuit T, Lenne P, Munro E
. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol. 2011; 27:157-84.
DOI: 10.1146/annurev-cellbio-100109-104027.
View
14.
Gaiser A, Kaiser C, Haslbeck V, Richter K
. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One. 2011; 6(9):e25485.
PMC: 3182237.
DOI: 10.1371/journal.pone.0025485.
View
15.
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y
. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr. 2023; 10:1037200.
PMC: 9932270.
DOI: 10.3389/fnut.2023.1037200.
View
16.
Zhang S, Li F, Zhou T, Wang G, Li Z
. as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne). 2020; 11:554994.
PMC: 7570440.
DOI: 10.3389/fendo.2020.554994.
View
17.
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A
. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in . Elife. 2022; 11.
PMC: 9113742.
DOI: 10.7554/eLife.75529.
View
18.
Lecroisey C, Segalat L, Gieseler K
. The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil. 2007; 28(1):79-87.
DOI: 10.1007/s10974-007-9104-y.
View
19.
Wilson K, Qadota H, Benian G
. Immunofluorescent localization of proteins in Caenorhabditis elegans muscle. Methods Mol Biol. 2011; 798:171-81.
PMC: 3731740.
DOI: 10.1007/978-1-61779-343-1_10.
View
20.
Sweeney H, Hammers D
. Muscle Contraction. Cold Spring Harb Perspect Biol. 2018; 10(2).
PMC: 5793755.
DOI: 10.1101/cshperspect.a023200.
View