6.
Li T, Chen X, Cai Y, Dai J
. Artificial Protein Scaffold System (AProSS): An efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab Eng. 2018; 49:13-20.
DOI: 10.1016/j.ymben.2018.07.006.
View
7.
Wahid E, Ocheja O, Marsili E, Guaragnella C, Guaragnella N
. Biological and technical challenges for implementation of yeast-based biosensors. Microb Biotechnol. 2022; 16(1):54-66.
PMC: 9803330.
DOI: 10.1111/1751-7915.14183.
View
8.
Lin H, Lin C, Lin Y, Lin H, Shih C, Chen C
. Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures. Appl Environ Microbiol. 2010; 76(5):1683-5.
PMC: 2832404.
DOI: 10.1128/AEM.00824-09.
View
9.
Ahmed A, Ahmad A, Li R, Al-Ansi W, Fatima M, Mushtaq B
. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol. 2021; 31(11):1465-1480.
PMC: 9705886.
DOI: 10.4014/jmb.2107.07045.
View
10.
Fang M, Zhang C, Yang S, Cui J, Jiang P, Lou K
. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact. 2015; 14:8.
PMC: 4306242.
DOI: 10.1186/s12934-015-0192-x.
View
11.
Lopreside A, Wan X, Michelini E, Roda A, Wang B
. Comprehensive Profiling of Diverse Genetic Reporters with Application to Whole-Cell and Cell-Free Biosensors. Anal Chem. 2019; 91(23):15284-15292.
PMC: 6899433.
DOI: 10.1021/acs.analchem.9b04444.
View
12.
Strickfaden S, Winters M, Ben-Ari G, Lamson R, Tyers M, Pryciak P
. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell. 2007; 128(3):519-31.
PMC: 1847584.
DOI: 10.1016/j.cell.2006.12.032.
View
13.
Zhou Y, Li G, Dong J, Xing X, Dai J, Zhang C
. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab Eng. 2018; 47:294-302.
DOI: 10.1016/j.ymben.2018.03.020.
View
14.
Adeniran A, Sherer M, Tyo K
. Yeast-based biosensors: design and applications. FEMS Yeast Res. 2014; 15(1):1-15.
DOI: 10.1111/1567-1364.12203.
View
15.
Jarque S, Bittner M, Blaha L, Hilscherova K
. Yeast Biosensors for Detection of Environmental Pollutants: Current State and Limitations. Trends Biotechnol. 2016; 34(5):408-419.
DOI: 10.1016/j.tibtech.2016.01.007.
View
16.
Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y
. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact. 2016; 15(1):113.
PMC: 4915043.
DOI: 10.1186/s12934-016-0509-4.
View
17.
Skrekas C, Ferreira R, David F
. Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening. Methods Mol Biol. 2022; 2513:39-57.
DOI: 10.1007/978-1-0716-2399-2_4.
View
18.
Billerbeck S, Brisbois J, Agmon N, Jimenez M, Temple J, Shen M
. A scalable peptide-GPCR language for engineering multicellular communication. Nat Commun. 2018; 9(1):5057.
PMC: 6265332.
DOI: 10.1038/s41467-018-07610-2.
View
19.
Rantasalo A, Kuivanen J, Penttila M, Jantti J, Mojzita D
. Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae. ACS Synth Biol. 2018; 7(6):1573-1587.
PMC: 6150731.
DOI: 10.1021/acssynbio.8b00076.
View
20.
Lee M, Aswani A, Han A, Tomlin C, Dueber J
. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 2013; 41(22):10668-78.
PMC: 3905865.
DOI: 10.1093/nar/gkt809.
View