» Articles » PMID: 38779775

Molecular and Cellular Consequences of Mitochondrial DNA Double-stranded Breaks

Overview
Journal Hum Mol Genet
Date 2024 May 23
PMID 38779775
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria are subcellular organelles essential for life. Beyond their role in producing energy, mitochondria govern various physiological mechanisms, encompassing energy generation, metabolic processes, apoptotic events, and immune responses. Mitochondria also contain genetic material that is susceptible to various forms of damage. Mitochondrial double-stranded breaks (DSB) are toxic lesions that the nucleus repairs promptly. Nevertheless, the significance of DSB repair in mammalian mitochondria is controversial. This review presents an updated view of the available research on the consequences of mitochondrial DNA DSB from the molecular to the cellular level. We discuss the crucial function of mitochondrial DNA damage in regulating processes such as senescence, integrated stress response, and innate immunity. Lastly, we discuss the potential role of mitochondrial DNA DSB in mediating the cellular consequences of ionizing radiations, the standard of care in treating solid tumors.

Citing Articles

ATP5J regulates microglial activation via mitochondrial dysfunction, exacerbating neuroinflammation in intracerebral hemorrhage.

Ren N, Zhang H, Li T, Ji H, Zhang Z, Wu H Front Immunol. 2024; 15:1509370.

PMID: 39735538 PMC: 11671693. DOI: 10.3389/fimmu.2024.1509370.


Oxidative Stress and Age-Related Tumors.

Di Carlo E, Sorrentino C Antioxidants (Basel). 2024; 13(9).

PMID: 39334768 PMC: 11428699. DOI: 10.3390/antiox13091109.

References
1.
Ljung G, Egevad L, Norberg M, Holmberg L, Nilsson S, Busch C . Expression of p21 and mutant p53 gene products in residual prostatic tumor cells after radical radiotherapy. Prostate. 1997; 32(2):99-105. DOI: 10.1002/(sici)1097-0045(19970701)32:2<99::aid-pros4>3.0.co;2-a. View

2.
Bacman S, Kauppila J, Pereira C, Nissanka N, Miranda M, Pinto M . MitoTALEN reduces mutant mtDNA load and restores tRNA levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018; 24(11):1696-1700. PMC: 6942693. DOI: 10.1038/s41591-018-0166-8. View

3.
Alexeyev M, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson G . Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther. 2008; 15(7):516-23. PMC: 10416612. DOI: 10.1038/gt.2008.11. View

4.
Bacman S, Williams S, Pinto M, Peralta S, Moraes C . Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013; 19(9):1111-3. PMC: 4153471. DOI: 10.1038/nm.3261. View

5.
Dey R, Barrientos A, Moraes C . Functional constraints of nuclear-mitochondrial DNA interactions in xenomitochondrial rodent cell lines. J Biol Chem. 2000; 275(40):31520-7. DOI: 10.1074/jbc.M004053200. View