» Articles » PMID: 38779592

A Lipid Nanoparticle Platform Incorporating Trehalose Glycolipid for Exceptional MRNA Vaccine Safety

Abstract

The rapid development of messenger RNA (mRNA) vaccines formulated with lipid nanoparticles (LNPs) has contributed to control of the COVID-19 pandemic. However, mRNA vaccines have raised concerns about their potential toxicity and clinical safety, including side effects, such as myocarditis, anaphylaxis, and pericarditis. In this study, we investigated the potential of trehalose glycolipids-containing LNP (LNP S050L) to reduce the risks associated with ionizable lipids. Trehalose glycolipids can form hydrogen bonds with polar biomolecules, allowing the formation of a stable LNP structure by replacing half of the ionizable lipids. The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity, respectively. Furthermore, mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity, including in the heart, spleen, and liver, while sustaining gene expression and immune efficiency, compared to conventional LNPs (Con-LNPs). Our findings suggest that LNP S050L, a trehalose glycolipid-based LNP, could facilitate the development of safe mRNA vaccines with improved clinical safety.

Citing Articles

Peptides: potential delivery systems for mRNA.

Liang H, Xing Y, Wang K, Zhang Y, Yin F, Li Z RSC Chem Biol. 2025; .

PMID: 40071030 PMC: 11891934. DOI: 10.1039/d4cb00295d.


Revolutionizing Dentistry: Preclinical Insights and Future Applications of mRNA Vaccines in Dentistry-A Narrative Review.

Koren L, Koren A, Likic R, Katanec T Dent J (Basel). 2025; 13(2).

PMID: 39996953 PMC: 11854559. DOI: 10.3390/dj13020079.


Multivalent ionizable lipid-polypeptides for tumor-confined mRNA transfection.

Zhao X, Zhang Y, Wang X, Fu Z, Zhong Z, Deng C Bioact Mater. 2025; 46():423-433.

PMID: 39850023 PMC: 11754973. DOI: 10.1016/j.bioactmat.2024.12.032.


Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants.

Weth A, Dangerfield E, Timmer M, Stocker B Vaccines (Basel). 2025; 12(12.

PMID: 39771982 PMC: 11680293. DOI: 10.3390/vaccines12121320.


Nonviral targeted mRNA delivery: principles, progresses, and challenges.

He X, Li G, Huang L, Shi H, Zhong S, Zhao S MedComm (2020). 2025; 6(1):e70035.

PMID: 39760110 PMC: 11695212. DOI: 10.1002/mco2.70035.


References
1.
Weintraub E, Oster M, Klein N . Myocarditis or Pericarditis Following mRNA COVID-19 Vaccination. JAMA Netw Open. 2022; 5(6):e2218512. PMC: 9340663. DOI: 10.1001/jamanetworkopen.2022.18512. View

2.
Carragher D, Rangel-Moreno J, Randall T . Ectopic lymphoid tissues and local immunity. Semin Immunol. 2008; 20(1):26-42. PMC: 2276727. DOI: 10.1016/j.smim.2007.12.004. View

3.
Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N . The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One. 2013; 8(1):e53531. PMC: 3538599. DOI: 10.1371/journal.pone.0053531. View

4.
Paul N, Twibanire J, Grindley T . Direct synthesis of maradolipids and other trehalose 6-monoesters and 6,6'-diesters. J Org Chem. 2012; 78(2):363-9. DOI: 10.1021/jo302231v. View

5.
Bezrukavnikov S, Mashaghi A, van Wijk R, Gu C, Yang L, Gao Y . Trehalose facilitates DNA melting: a single-molecule optical tweezers study. Soft Matter. 2014; 10(37):7269-77. DOI: 10.1039/c4sm01532k. View