6.
Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I
. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011; 28(5):873-82.
DOI: 10.1016/j.fm.2010.12.001.
View
7.
Conacher C, Rossouw D, Bauer F
. Peer pressure: evolutionary responses to biotic pressures in wine yeasts. FEMS Yeast Res. 2019; 19(7).
DOI: 10.1093/femsyr/foz072.
View
8.
Props R, Kerckhof F, Rubbens P, De Vrieze J, Hernandez Sanabria E, Waegeman W
. Absolute quantification of microbial taxon abundances. ISME J. 2016; 11(2):584-587.
PMC: 5270559.
DOI: 10.1038/ismej.2016.117.
View
9.
Conacher C, Naidoo-Blassoples R, Rossouw D, Bauer F
. Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry. Appl Microbiol Biotechnol. 2020; 104(12):5547-5562.
DOI: 10.1007/s00253-020-10607-x.
View
10.
Nestor E, Toledano G, Friedman J
. Interactions between Culturable Bacteria Are Predicted by Individual Species' Growth. mSystems. 2023; 8(2):e0083622.
PMC: 10134828.
DOI: 10.1128/msystems.00836-22.
View
11.
Fernandez de Ullivarri M, Bulacios G, Navarro S, Lanza L, Mendoza L, Chalon M
. The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds. Med Mycol. 2020; 58(8):1102-1113.
DOI: 10.1093/mmy/myaa011.
View
12.
Bokulich N, Collins T, Masarweh C, Allen G, Heymann H, Ebeler S
. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio. 2016; 7(3).
PMC: 4959672.
DOI: 10.1128/mBio.00631-16.
View
13.
Peng C, Andersen B, Arshid S, Larsen M, Albergaria H, Lametsch R
. Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans. FEMS Microbiol Ecol. 2019; 95(9).
DOI: 10.1093/femsec/fiz126.
View
14.
Morton J, Marotz C, Washburne A, Silverman J, Zaramela L, Edlund A
. Establishing microbial composition measurement standards with reference frames. Nat Commun. 2019; 10(1):2719.
PMC: 6586903.
DOI: 10.1038/s41467-019-10656-5.
View
15.
Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn M, Pronk J, Slijper M
. Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol. 2006; 2:2006.0026.
PMC: 1681501.
DOI: 10.1038/msb4100069.
View
16.
Sun X, Sanchez A
. Synthesizing microbial biodiversity. Curr Opin Microbiol. 2023; 75:102348.
DOI: 10.1016/j.mib.2023.102348.
View
17.
Combina M, Elia A, Mercado L, Catania C, Ganga A, Martinez C
. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int J Food Microbiol. 2005; 99(3):237-43.
DOI: 10.1016/j.ijfoodmicro.2004.08.017.
View
18.
Luyt N, Beaufort S, Divol B, Setati M, Taillandier P, Bauer F
. Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation. World J Microbiol Biotechnol. 2021; 37(11):186.
DOI: 10.1007/s11274-021-03154-8.
View
19.
Bagheri B, Zambelli P, Vigentini I, Bauer F, Setati M
. Investigating the Effect of Selected Non- Species on Wine Ecosystem Function and Major Volatiles. Front Bioeng Biotechnol. 2018; 6:169.
PMC: 6243112.
DOI: 10.3389/fbioe.2018.00169.
View
20.
Thompson J, Johansen R, Dunbar J, Munsky B
. Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition. PLoS One. 2019; 14(7):e0215502.
PMC: 6602172.
DOI: 10.1371/journal.pone.0215502.
View