» Articles » PMID: 38776280

Lemon Basil Seed-derived Peptide: Hydrolysis, Purification, and Its Role As a Pancreatic Lipase Inhibitor That Reduces Adipogenesis by Downregulating SREBP-1c and PPAR-γ in 3T3-L1 Adipocytes

Abstract

The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 μg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.

Citing Articles

Anti-obesity effects of ethanol extract of green peel enriched in naringin and hesperidin and .

Heo Y, Lee M, Im J, Kim B, Lee H Nutr Res Pract. 2025; 19(1):1-13.

PMID: 39959742 PMC: 11821779. DOI: 10.4162/nrp.2025.19.1.1.


Mealworm-Derived Protein Hydrolysates Enhance Adipogenic Differentiation via Mitotic Clonal Expansion in 3T3-L1 Cells.

Ryu H, Lee S Foods. 2025; 14(2).

PMID: 39856884 PMC: 11765357. DOI: 10.3390/foods14020217.

References
1.
Thayumanavan P, Nallaiyan S, Loganathan C, Sakayanathan P, Kandasamy S, Isa M . Inhibition of glutathione and s-allyl glutathione on pancreatic lipase: Analysis through in vitro kinetics, fluorescence spectroscopy and in silico docking. Int J Biol Macromol. 2020; 160:623-631. DOI: 10.1016/j.ijbiomac.2020.05.215. View

2.
Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. DOI: 10.1016/0003-2697(76)90527-3. View

3.
Mudgil P, Kamal H, Yuen G, Maqsood S . Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018; 259:46-54. DOI: 10.1016/j.foodchem.2018.03.082. View

4.
Cristancho A, Lazar M . Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011; 12(11):722-34. PMC: 7171550. DOI: 10.1038/nrm3198. View

5.
Nisoli E, Carruba M . An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev. 2002; 1(2):127-39. DOI: 10.1046/j.1467-789x.2000.00020.x. View