6.
Catar R, Witowski J, Zhu N, Lucht C, Derrac Soria A, Uceda Fernandez J
. IL-6 Trans-Signaling Links Inflammation with Angiogenesis in the Peritoneal Membrane. J Am Soc Nephrol. 2016; 28(4):1188-1199.
PMC: 5373439.
DOI: 10.1681/ASN.2015101169.
View
7.
Busnadiego O, Loureiro-Alvarez J, Sandoval P, Lagares D, Dotor J, Perez-Lozano M
. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol. 2014; 26(1):173-82.
PMC: 4279729.
DOI: 10.1681/ASN.2013070799.
View
8.
Selgas R, Bajo A, Jimenez-Heffernan J, Sanchez-Tomero J, Peso G, Aguilera A
. Epithelial-to-mesenchymal transition of the mesothelial cell--its role in the response of the peritoneum to dialysis. Nephrol Dial Transplant. 2006; 21 Suppl 2:ii2-7.
DOI: 10.1093/ndt/gfl183.
View
9.
Guo Y, Wang L, Gou R, Wang Y, Shi X, Pang X
. SIRT1-modified human umbilical cord mesenchymal stem cells ameliorate experimental peritoneal fibrosis by inhibiting the TGF-β/Smad3 pathway. Stem Cell Res Ther. 2020; 11(1):362.
PMC: 7436980.
DOI: 10.1186/s13287-020-01878-2.
View
10.
Sun S, Tang P, Feng M, Xiao J, Huang X, Li P
. Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in Mice by Targeting miR-29b. Diabetes. 2017; 67(4):731-744.
DOI: 10.2337/db17-0816.
View
11.
Zhang X, Wang L, Ding H
. Long noncoding RNA AK089579 inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by competitively binding to microRNA-296-3p via DOK2 in peritoneal fibrosis. FASEB J. 2019; 33(4):5112-5125.
DOI: 10.1096/fj.201801111RR.
View
12.
Xia W, Chen X, Ru F, He Y, Liu P, Gan Y
. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol. 2021; 139:87-96.
DOI: 10.1016/j.molimm.2021.07.012.
View
13.
Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano M
. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011; 22(9):1682-95.
PMC: 3171939.
DOI: 10.1681/ASN.2010111197.
View
14.
Kam-Tao Li P, Chow K, van de Luijtgaarden M, Johnson D, Jager K, Mehrotra R
. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol. 2016; 13(2):90-103.
DOI: 10.1038/nrneph.2016.181.
View
15.
Zhang Y, Tang P, Chiu-Tsun Tang P, Xiao J, Huang X, Yu C
. LRNA9884, a Novel Smad3-Dependent Long Noncoding RNA, Promotes Diabetic Kidney Injury in / Mice via Enhancing MCP-1-Dependent Renal Inflammation. Diabetes. 2019; 68(7):1485-1498.
DOI: 10.2337/db18-1075.
View
16.
Xia M, Liu J, Liu S, Chen K, Lin H, Jiang M
. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat Commun. 2017; 8:15818.
PMC: 5472765.
DOI: 10.1038/ncomms15818.
View
17.
Sani H, Hejazian M, Hosseinian Khatibi S, Ardalan M, Zununi Vahed S
. Long non-coding RNAs: An essential emerging field in kidney pathogenesis. Biomed Pharmacother. 2018; 99:755-765.
DOI: 10.1016/j.biopha.2018.01.122.
View
18.
Li C, Ren Y, Jia X, Liang P, Lou W, He L
. Twist overexpression promoted epithelial-to-mesenchymal transition of human peritoneal mesothelial cells under high glucose. Nephrol Dial Transplant. 2012; 27(11):4119-24.
DOI: 10.1093/ndt/gfs049.
View
19.
Che M, Shi T, Feng S, Li H, Zhang X, Feng N
. The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. J Am Soc Nephrol. 2017; 28(8):2459-2471.
PMC: 5533225.
DOI: 10.1681/ASN.2016060663.
View
20.
Twardowski Z, Nolph K, Khanna R
. Limitations of the peritoneal equilibration test. Nephrol Dial Transplant. 1995; 10(11):2160-1.
View