» Articles » PMID: 38774625

MultiBench: Multiscale Benchmarks for Multimodal Representation Learning

Overview
Date 2024 May 22
PMID 38774625
Authors
Affiliations
Soon will be listed here.
Abstract

Learning multimodal representations involves integrating information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, human-computer interaction, and healthcare. Unfortunately, multimodal research has seen limited resources to study (1) generalization across domains and modalities, (2) complexity during training and inference, and (3) robustness to noisy and missing modalities. In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiBench, a systematic and unified large-scale benchmark for multimodal learning spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. MultiBench provides an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation. To enable holistic evaluation, MultiBench offers a comprehensive methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness. MultiBench introduces impactful challenges for future research, including scalability to large-scale multimodal datasets and robustness to realistic imperfections. To accompany this benchmark, we also provide a standardized implementation of 20 core approaches in multimodal learning spanning innovations in fusion paradigms, optimization objectives, and training approaches. Simply applying methods proposed in different research areas can improve the state-of-the-art performance on 9/15 datasets. Therefore, MultiBench presents a milestone in unifying disjoint efforts in multimodal machine learning research and paves the way towards a better understanding of the capabilities and limitations of multimodal models, all the while ensuring ease of use, accessibility, and reproducibility. MultiBench, our standardized implementations, and leaderboards are publicly available, will be regularly updated, and welcomes inputs from the community.

Citing Articles

A scoping review of robustness concepts for machine learning in healthcare.

Balendran A, Beji C, Bouvier F, Khalifa O, Evgeniou T, Ravaud P NPJ Digit Med. 2025; 8(1):38.

PMID: 39824951 PMC: 11742061. DOI: 10.1038/s41746-024-01420-1.


Advanced neural network-based model for predicting court decisions on child custody.

Abrar M, Salam A, Ullah F, Nadeem M, Alsalman H, Mukred M PeerJ Comput Sci. 2024; 10:e2293.

PMID: 39650418 PMC: 11622840. DOI: 10.7717/peerj-cs.2293.


Multimodal Federated Learning: A Survey.

Che L, Wang J, Zhou Y, Ma F Sensors (Basel). 2023; 23(15).

PMID: 37571768 PMC: 10422520. DOI: 10.3390/s23156986.


Effective Techniques for Multimodal Data Fusion: A Comparative Analysis.

Pawlowski M, Wroblewska A, Sysko-Romanczuk S Sensors (Basel). 2023; 23(5).

PMID: 36904585 PMC: 10007548. DOI: 10.3390/s23052381.

References
1.
Tsai Y, Ma M, Yang M, Salakhutdinov R, Morency L . Multimodal Routing: Improving Local and Global Interpretability of Multimodal Language Analysis. Proc Conf Empir Methods Nat Lang Process. 2021; 2020:1823-1833. PMC: 8106385. DOI: 10.18653/v1/2020.emnlp-main.143. View

2.
Zadeh A, Cao Y, Hessner S, Liang P, Poria S, Morency L . CMU-MOSEAS: A Multimodal Language Dataset for Spanish, Portuguese, German and French. Proc Conf Empir Methods Nat Lang Process. 2021; 2020:1801-1812. PMC: 8106386. DOI: 10.18653/v1/2020.emnlp-main.141. View

3.
Xia Y, Yang D, Yu Z, Liu F, Cai J, Yu L . Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med Image Anal. 2020; 65:101766. DOI: 10.1016/j.media.2020.101766. View

4.
Scassellati B, Admoni H, Mataric M . Robots for use in autism research. Annu Rev Biomed Eng. 2012; 14:275-94. DOI: 10.1146/annurev-bioeng-071811-150036. View

5.
Velupillai S, Suominen H, Liakata M, Roberts A, Shah A, Morley K . Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances. J Biomed Inform. 2018; 88:11-19. PMC: 6986921. DOI: 10.1016/j.jbi.2018.10.005. View