» Articles » PMID: 38772369

Massively Parallel In vivo Perturb-seq Reveals Cell-type-specific Transcriptional Networks in Cortical Development

Abstract

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.

Citing Articles

Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq.

Zhang H, Li X, Song D, Yukselen O, Nanda S, Kucukural A bioRxiv. 2025; .

PMID: 39975282 PMC: 11838469. DOI: 10.1101/2025.02.02.636107.


Massively parallel in vivo Perturb-seq screening.

Zheng X, Thompson P, White C, Jin X Nat Protoc. 2025; .

PMID: 39939709 DOI: 10.1038/s41596-024-01119-3.


Single-cell CRISPR screening in mouse brain.

Pankevich E, Bock C Nat Protoc. 2025; .

PMID: 39939708 DOI: 10.1038/s41596-024-01128-2.


An in vivo CRISPR screen in chick embryos reveals a role for MLLT3 in specification of neural cells from the caudal epiblast.

Libby A, Rito T, Radley A, Briscoe J Development. 2025; 152(3).

PMID: 39804120 PMC: 11883246. DOI: 10.1242/dev.204591.


Just a SNP away: The future of massively parallel reporter assay.

Degner K, Bell J, Jones S, Won H Cell Insight. 2024; 4(1):100214.

PMID: 39618480 PMC: 11607654. DOI: 10.1016/j.cellin.2024.100214.


References
1.
Chi J, Wu Z, Choi C, Nguyen L, Tegegne S, Ackerman S . Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metab. 2018; 27(1):226-236.e3. DOI: 10.1016/j.cmet.2017.12.011. View

2.
Li H, Durbin R . Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5):589-95. PMC: 2828108. DOI: 10.1093/bioinformatics/btp698. View

3.
Wong F, Bercsenyi K, Sreenivasan V, Portales A, Fernandez-Otero M, Marin O . Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature. 2018; 557(7707):668-673. PMC: 6207348. DOI: 10.1038/s41586-018-0139-6. View

4.
Di Tommaso P, Chatzou M, Floden E, Prieto Barja P, Palumbo E, Notredame C . Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017; 35(4):316-319. DOI: 10.1038/nbt.3820. View

5.
Platt R, Chen S, Zhou Y, Yim M, Swiech L, Kempton H . CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014; 159(2):440-55. PMC: 4265475. DOI: 10.1016/j.cell.2014.09.014. View