6.
Huang Z, Xi S, Song J, Dou S, Li X, Du Y
. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat Commun. 2021; 12(1):3992.
PMC: 8238955.
DOI: 10.1038/s41467-021-24182-w.
View
7.
Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H
. Covalency-reinforced oxygen evolution reaction catalyst. Nat Commun. 2015; 6:8249.
PMC: 4579779.
DOI: 10.1038/ncomms9249.
View
8.
Moysiadou A, Lee S, Hsu C, Ming Chen H, Hu X
. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. J Am Chem Soc. 2020; 142(27):11901-11914.
DOI: 10.1021/jacs.0c04867.
View
9.
Kumar A, Daw P, Milstein D
. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev. 2021; 122(1):385-441.
PMC: 8759071.
DOI: 10.1021/acs.chemrev.1c00412.
View
10.
Zhu Y, Tahini H, Hu Z, Chen Z, Zhou W, Komarek A
. Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide. Adv Mater. 2019; 32(1):e1905025.
DOI: 10.1002/adma.201905025.
View
11.
Cong S, Liu X, Jiang Y, Zhang W, Zhao Z
. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation (Camb). 2021; 1(3):100051.
PMC: 8454671.
DOI: 10.1016/j.xinn.2020.100051.
View
12.
Gupta A, Chemelewski W, Mullins C, Goodenough J
. High-rate oxygen evolution reaction on Al-doped LiNiO2. Adv Mater. 2015; 27(39):6063-7.
DOI: 10.1002/adma.201502256.
View
13.
Kang J, Xue Y, Yang J, Hu Q, Zhang Q, Gu L
. Realizing Two-Electron Transfer in Ni(OH) Nanosheets for Energy Storage. J Am Chem Soc. 2022; 144(20):8969-8976.
DOI: 10.1021/jacs.1c13523.
View
14.
Lee S, Banjac K, Lingenfelder M, Hu X
. Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angew Chem Int Ed Engl. 2019; 58(30):10295-10299.
PMC: 6771717.
DOI: 10.1002/anie.201903200.
View
15.
Guan D, Xu H, Zhang Q, Huang Y, Shi C, Chang Y
. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Adv Mater. 2023; 35(44):e2305074.
DOI: 10.1002/adma.202305074.
View
16.
Magnier L, Cossard G, Martin V, Pascal C, Roche V, Sibert E
. Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat Mater. 2024; 23(2):252-261.
DOI: 10.1038/s41563-023-01744-5.
View
17.
Sun T, Tang Z, Zang W, Li Z, Li J, Li Z
. Ferromagnetic single-atom spin catalyst for boosting water splitting. Nat Nanotechnol. 2023; 18(7):763-771.
DOI: 10.1038/s41565-023-01407-1.
View
18.
Nemrava S, Vinnik D, Hu Z, Valldor M, Kuo C, Zherebtsov D
. Three Oxidation States of Manganese in the Barium Hexaferrite BaFeMnO. Inorg Chem. 2017; 56(7):3861-3866.
DOI: 10.1021/acs.inorgchem.6b02688.
View
19.
Louie M, Bell A
. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc. 2013; 135(33):12329-37.
DOI: 10.1021/ja405351s.
View
20.
Subbaraman R, Tripkovic D, Chang K, Strmcnik D, Paulikas A, Hirunsit P
. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012; 11(6):550-7.
DOI: 10.1038/nmat3313.
View