6.
Nattel S
. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin Electrophysiol. 2018; 3(5):425-435.
DOI: 10.1016/j.jacep.2017.03.002.
View
7.
Jalife J, Kaur K
. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015; 25(6):475-84.
PMC: 5658790.
DOI: 10.1016/j.tcm.2014.12.015.
View
8.
Disertori M, Mase M, Ravelli F
. Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc Med. 2017; 27(5):363-372.
DOI: 10.1016/j.tcm.2017.01.011.
View
9.
Kottkamp H
. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 2013; 34(35):2731-8.
DOI: 10.1093/eurheartj/eht194.
View
10.
Disertori M, Mase M, Marini M, Mazzola S, Cristoforetti A, Greco M
. Electroanatomic mapping and late gadolinium enhancement MRI in a genetic model of arrhythmogenic atrial cardiomyopathy. J Cardiovasc Electrophysiol. 2014; 25(9):964-970.
DOI: 10.1111/jce.12440.
View
11.
McGann C, Akoum N, Patel A, Kholmovski E, Revelo P, Damal K
. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 2013; 7(1):23-30.
PMC: 4086672.
DOI: 10.1161/CIRCEP.113.000689.
View
12.
Zhao J, Hansen B, Wang Y, Csepe T, Sul L, Tang A
. Three-dimensional Integrated Functional, Structural, and Computational Mapping to Define the Structural "Fingerprints" of Heart-Specific Atrial Fibrillation Drivers in Human Heart Ex Vivo. J Am Heart Assoc. 2017; 6(8).
PMC: 5586436.
DOI: 10.1161/JAHA.117.005922.
View
13.
Ravelli F, Mase M, Cristoforetti A, Avogaro L, DAmato E, Tessarolo F
. Quantitative assessment of transmural fibrosis profile in the human atrium: evidence for a three-dimensional arrhythmic substrate by slice-to-slice histology. Europace. 2022; 25(2):739-747.
PMC: 9935010.
DOI: 10.1093/europace/euac187.
View
14.
Verheule S, Schotten U
. Electrophysiological Consequences of Cardiac Fibrosis. Cells. 2021; 10(11).
PMC: 8625398.
DOI: 10.3390/cells10113220.
View
15.
Boyle P, Zahid S, Trayanova N
. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace. 2016; 18(suppl 4):iv136-iv145.
PMC: 5841887.
DOI: 10.1093/europace/euw358.
View
16.
Aronis K, Ali R, Trayanova N
. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int J Cardiol. 2019; 287:139-147.
PMC: 6513696.
DOI: 10.1016/j.ijcard.2019.01.096.
View
17.
Bifulco S, Akoum N, Boyle P
. Translational applications of computational modelling for patients with cardiac arrhythmias. Heart. 2020; .
PMC: 10896425.
DOI: 10.1136/heartjnl-2020-316854.
View
18.
Roney C, Bayer J, Zahid S, Meo M, Boyle P, Trayanova N
. Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace. 2016; 18(suppl 4):iv146-iv155.
PMC: 6279153.
DOI: 10.1093/europace/euw365.
View
19.
Palacio L, Ugarte J, Saiz J, Tobon C
. The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study. Cells. 2021; 10(10).
PMC: 8534881.
DOI: 10.3390/cells10102769.
View
20.
Jacquemet V, Henriquez C
. Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. Am J Physiol Heart Circ Physiol. 2008; 294(5):H2040-52.
PMC: 3292859.
DOI: 10.1152/ajpheart.01298.2007.
View