6.
Joseph S, Sundar B, Rashme V, Venkatachalam S, Ehrlich J, Ravilla T
. Accuracy of a low-cost, portable, refractive error estimation device: Results of a diagnostic accuracy trial. PLoS One. 2022; 17(8):e0272451.
PMC: 9348729.
DOI: 10.1371/journal.pone.0272451.
View
7.
Macias B, Patel N, Gibson C, Samuels B, Laurie S, Otto C
. Association of Long-Duration Spaceflight With Anterior and Posterior Ocular Structure Changes in Astronauts and Their Recovery. JAMA Ophthalmol. 2020; 138(5):553-559.
PMC: 7118682.
DOI: 10.1001/jamaophthalmol.2020.0673.
View
8.
Waisberg E, Ong J, Masalkhi M, Zaman N, Kamran S, Sarker P
. The Case for Expanding Visual Assessments During Spaceflight. Prehosp Disaster Med. 2023; 38(4):518-521.
PMC: 10445111.
DOI: 10.1017/S1049023X23005964.
View
9.
Soares B, Ong J, Osteicoechea D, Kadipasaoglu C, Waisberg E, Sarker P
. A potential compensatory mechanism for spaceflight associated neuro-ocular changes from microgravity: current understanding and future directions. Eye (Lond). 2024; 38(9):1605-1607.
PMC: 11156849.
DOI: 10.1038/s41433-024-02952-2.
View
10.
Mader T, Gibson C, Otto C, Sargsyan A, Miller N, Subramanian P
. Persistent Asymmetric Optic Disc Swelling After Long-Duration Space Flight: Implications for Pathogenesis. J Neuroophthalmol. 2016; 37(2):133-139.
DOI: 10.1097/WNO.0000000000000467.
View
11.
Sater S, Sass A, Rohr J, Marshall-Goebel K, Ploutz-Snyder R, Ethier C
. Automated MRI-based quantification of posterior ocular globe flattening and recovery after long-duration spaceflight. Eye (Lond). 2021; 35(7):1869-1878.
PMC: 8225832.
DOI: 10.1038/s41433-021-01408-1.
View
12.
Yang J, Song Q, Zhang M, Ai J, Wang F, Kan G
. Spaceflight-associated neuro-ocular syndrome: a review of potential pathogenesis and intervention. Int J Ophthalmol. 2022; 15(2):336-341.
PMC: 8818462.
DOI: 10.18240/ijo.2022.02.21.
View
13.
Lee A, Mader T, Gibson C, Brunstetter T, Tarver W
. Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond). 2018; 32(7):1164-1167.
PMC: 6043524.
DOI: 10.1038/s41433-018-0070-y.
View
14.
Lee A, Mader T, Gibson C, Tarver W, Rabiei P, Riascos R
. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity. 2020; 6:7.
PMC: 7005826.
DOI: 10.1038/s41526-020-0097-9.
View
15.
Ong J, Tarver W, Brunstetter T, Mader T, Gibson C, Mason S
. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br J Ophthalmol. 2023; 107(7):895-900.
PMC: 10359702.
DOI: 10.1136/bjo-2022-322892.
View
16.
Ong J, Waisberg E, Masalkhi M, Suh A, Kamran S, Paladugu P
. "Spaceflight-to-Eye Clinic": Terrestrial advances in ophthalmic healthcare delivery from space-based innovations. Life Sci Space Res (Amst). 2024; 41:100-109.
DOI: 10.1016/j.lssr.2024.02.003.
View
17.
Pujol J, Ondategui-Parra J, Badiella L, Otero C, Vilaseca M, Aldaba M
. Spherical subjective refraction with a novel 3D virtual reality based system. J Optom. 2016; 10(1):43-51.
PMC: 5219830.
DOI: 10.1016/j.optom.2015.12.005.
View
18.
Agarwal A, Bloom D, deLuise V, Lubet A, Murali K, Sastry S
. Comparing low-cost handheld autorefractors: A practical approach to measuring refraction in low-resource settings. PLoS One. 2019; 14(10):e0219501.
PMC: 6794120.
DOI: 10.1371/journal.pone.0219501.
View
19.
Sibony P, Laurie S, Ferguson C, Pardon L, Young M, Rohlf F
. Ocular Deformations in Spaceflight-Associated Neuro-Ocular Syndrome and Idiopathic Intracranial Hypertension. Invest Ophthalmol Vis Sci. 2023; 64(3):32.
PMC: 10064934.
DOI: 10.1167/iovs.64.3.32.
View
20.
Waisberg E, Ong J, Paladugu P, Kamran S, Zaman N, Tavakkoli A
. Radiation-induced ophthalmic risks of long duration spaceflight: Current investigations and interventions. Eur J Ophthalmol. 2023; 34(5):1337-1345.
DOI: 10.1177/11206721231221584.
View