» Articles » PMID: 38752471

Reduced Capsaicin-induced Mechanical Allodynia and Neuronal Responses in the Dorsal Root Ganglion in the Presence of Protein Tyrosine Phosphatase Non-receptor Type 6 Overexpression

Overview
Journal Mol Pain
Date 2024 May 16
PMID 38752471
Authors
Affiliations
Soon will be listed here.
Abstract

Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region two domain-containing phosphatase-1 (SHP-1, encoded by ) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization. Therefore, our goal was to determine the impact of overexpression on TRPV1-mediated neuronal responses and capsaicin-induced pain behavior in mice of both sexes. Twelve-week-old male and female mice overexpressing (Shp1-Tg) and their wild type (WT) littermates were used. overexpression was confirmed in the DRG of Shp1-Tg mice by RNA in situ hybridization and RT-qPCR. and were found to be co-expressed in DRG sensory neurons in both genotypes. Functionally, this overexpression resulted in lower magnitude intracellular calcium responses to 200 nM capsaicin stimulation in DRG cultures from Shp1-Tg mice compared to WTs. , we tested the effects of overexpression on capsaicin-induced pain through a model of capsaicin footpad injection. While capsaicin injection evoked nocifensive behavior (paw licking) and paw swelling in both genotypes and sexes, only WT mice developed mechanical allodynia after capsaicin injection. We observed similar level of TRPV1 protein expression in the DRG of both genotypes, however, a higher amount of tyrosine phosphorylated TRPV1 was detected in WT DRG. These experiments suggest that, while SHP-1 does not mediate the acute swelling and nocifensive behavior induced by capsaicin, it does mediate a protective effect against capsaicin-induced mechanical allodynia in both sexes. The protective effect of SHP-1 might be mediated by TRPV1 dephosphorylation in capsaicin-sensitive sensory neurons of the DRG.

Citing Articles

Klotho enhances stability of chronic kidney disease atherosclerotic plaques by inhibiting GRK2/PLC-β-mediated endoplasmic reticulum stress in macrophages via modulation of the ROS/SHP1 pathway.

Li Z, Li J, Li L, Wang Q, Zhang Q, Tian L Sci Rep. 2024; 14(1):32091.

PMID: 39738381 PMC: 11685394. DOI: 10.1038/s41598-024-83596-w.

References
1.
Neel B, Tonks N . Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997; 9(2):193-204. DOI: 10.1016/s0955-0674(97)80063-4. View

2.
Abram C, Lowell C . Shp1 function in myeloid cells. J Leukoc Biol. 2017; 102(3):657-675. PMC: 5557645. DOI: 10.1189/jlb.2MR0317-105R. View

3.
Markovics A, Toth D, Glant T, Mikecz K . Regulation of autoimmune arthritis by the SHP-1 tyrosine phosphatase. Arthritis Res Ther. 2020; 22(1):160. PMC: 7318740. DOI: 10.1186/s13075-020-02250-8. View

4.
Marsh H, Dubreuil C, Quevedo C, Lee A, Majdan M, Walsh G . SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. J Cell Biol. 2003; 163(5):999-1010. PMC: 2173621. DOI: 10.1083/jcb.200309036. View

5.
Nathan C . Points of control in inflammation. Nature. 2002; 420(6917):846-52. DOI: 10.1038/nature01320. View