6.
Maier S, Kratz A, Weber J, Prass M, Liu F, Clark A
. Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions. ISME J. 2021; 16(4):1012-1024.
PMC: 8941053.
DOI: 10.1038/s41396-021-01127-1.
View
7.
Wang T, Xue L, Brimblecombe P, Lam Y, Li L, Zhang L
. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ. 2016; 575:1582-1596.
DOI: 10.1016/j.scitotenv.2016.10.081.
View
8.
Laughner J, Cohen R
. Direct observation of changing NO lifetime in North American cities. Science. 2019; 366(6466):723-727.
PMC: 7301961.
DOI: 10.1126/science.aax6832.
View
9.
Liu B, Wang X, Ma L, Chadwick D, Chen X
. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China's vegetable systems: A meta-analysis. Environ Pollut. 2020; 269:116143.
DOI: 10.1016/j.envpol.2020.116143.
View
10.
Lu X, Ye X, Zhou M, Zhao Y, Weng H, Kong H
. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat Commun. 2021; 12(1):5021.
PMC: 8373933.
DOI: 10.1038/s41467-021-25147-9.
View
11.
Lu K, Fuchs H, Hofzumahaus A, Tan Z, Wang H, Zhang L
. Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environ Sci Technol. 2019; 53(18):10676-10684.
DOI: 10.1021/acs.est.9b02422.
View
12.
Liu P, Xue C, Ye C, Liu C, Zhang C, Wang J
. The Lack of HONO Measurement May Affect the Accurate Diagnosis of Ozone Production Sensitivity. ACS Environ Au. 2023; 3(1):18-23.
PMC: 10125324.
DOI: 10.1021/acsenvironau.2c00048.
View
13.
Wu D, Horn M, Behrendt T, Muller S, Li J, Cole J
. Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME J. 2019; 13(7):1688-1699.
PMC: 6776056.
DOI: 10.1038/s41396-019-0379-y.
View
14.
Shcherbak I, Millar N, Robertson G
. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A. 2014; 111(25):9199-204.
PMC: 4078848.
DOI: 10.1073/pnas.1322434111.
View
15.
Xue C, Ye C, Ma Z, Liu P, Zhang Y, Zhang C
. Development of stripping coil-ion chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO. Sci Total Environ. 2018; 646:187-195.
DOI: 10.1016/j.scitotenv.2018.07.244.
View
16.
Scharko N, Schutte U, Berke A, Banina L, Peel H, Donaldson M
. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil. Environ Sci Technol. 2015; 49(23):13825-34.
DOI: 10.1021/acs.est.5b00838.
View
17.
Tang K, Qin M, Fang W, Duan J, Meng F, Ye K
. An automated dynamic chamber system for exchange flux measurement of reactive nitrogen oxides (HONO and NO) in farmland ecosystems of the Huaihe River Basin, China. Sci Total Environ. 2020; 745:140867.
DOI: 10.1016/j.scitotenv.2020.140867.
View
18.
Lu K, Guo S, Tan Z, Wang H, Shang D, Liu Y
. Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. Natl Sci Rev. 2021; 6(3):579-594.
PMC: 8291643.
DOI: 10.1093/nsr/nwy073.
View
19.
Edwards P, Brown S, Roberts J, Ahmadov R, Banta R, deGouw J
. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature. 2014; 514(7522):351-4.
DOI: 10.1038/nature13767.
View
20.
Donaldson M, Bish D, Raff J
. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid. Proc Natl Acad Sci U S A. 2014; 111(52):18472-7.
PMC: 4284574.
DOI: 10.1073/pnas.1418545112.
View