» Articles » PMID: 38745763

MerCat2: a Versatile -mer Counter and Diversity Estimator for Database-independent Property Analysis Obtained from Omics Data

Overview
Journal Bioinform Adv
Specialty Biology
Date 2024 May 15
PMID 38745763
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: MerCat2 ("Mer-Catenate2") is a versatile, parallel, scalable and modular property software package for robustly analyzing features in omics data. Using massively parallel sequencing raw reads, assembled contigs, and protein sequences from any platform as input, MerCat2 performs -mer counting of any length , resulting in feature abundance counts tables, quality control reports, protein feature metrics, and graphical representation (i.e. principal component analysis (PCA)).

Results: MerCat2 allows for direct analysis of data properties in a database-independent manner that initializes all data, which other profilers and assembly-based methods cannot perform. MerCat2 represents an integrated tool to illuminate omics data within a sample for rapid cross-examination and comparisons.

Availability And Implementation: MerCat2 is written in Python and distributed under a BSD-3 license. The source code of MerCat2 is freely available at https://github.com/raw-lab/mercat2. MerCat2 is compatible with Python 3 on Mac OS X and Linux. MerCat2 can also be easily installed using bioconda: mamba create -n mercat2 -c conda-forge -c bioconda mercat2.

Citing Articles

Integrating Genomic Data with the Development of CRISPR-Based Point-of-Care-Testing for Bacterial Infections.

Wanitchanon T, Chewapreecha C, Uttamapinant C Curr Clin Microbiol Rep. 2024; 11(4):241-258.

PMID: 39525369 PMC: 11541280. DOI: 10.1007/s40588-024-00236-7.


Utilizing genomic signatures to gain insights into the dynamics of SARS-CoV-2 through Machine and Deep Learning techniques.

Elsherbini A, Elkholy A, Fadel Y, Goussarov G, Elshal A, El-Hadidi M BMC Bioinformatics. 2024; 25(1):131.

PMID: 38539073 PMC: 10967124. DOI: 10.1186/s12859-024-05648-2.


MetaCerberus: distributed highly parallelized HMM-based processing for robust functional annotation across the tree of life.

Figueroa Iii J, Dhungel E, Bellanger M, Brouwer C, White Iii R Bioinformatics. 2024; 40(3).

PMID: 38426351 PMC: 10955254. DOI: 10.1093/bioinformatics/btae119.

References
1.
White 3rd R, Soles S, Gavelis G, Gosselin E, Slater G, Lim D . The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol. 2019; 9:3189. PMC: 6331483. DOI: 10.3389/fmicb.2018.03189. View

2.
Van der Jeugt F, Dawyndt P, Mesuere B . FragGeneScanRs: faster gene prediction for short reads. BMC Bioinformatics. 2022; 23(1):198. PMC: 9148508. DOI: 10.1186/s12859-022-04736-5. View

3.
Wu Y, Simmons B, Singer S . MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2015; 32(4):605-7. DOI: 10.1093/bioinformatics/btv638. View

4.
Jiang B, Song K, Ren J, Deng M, Sun F, Zhang X . Comparison of metagenomic samples using sequence signatures. BMC Genomics. 2012; 13:730. PMC: 3549735. DOI: 10.1186/1471-2164-13-730. View

5.
Howe A, Jansson J, Malfatti S, Tringe S, Tiedje J, Brown C . Tackling soil diversity with the assembly of large, complex metagenomes. Proc Natl Acad Sci U S A. 2014; 111(13):4904-9. PMC: 3977251. DOI: 10.1073/pnas.1402564111. View