» Articles » PMID: 3874390

Ouabain Decreases Apparent Potassium-conductance in Proximal Tubules of the Amphibian Kidney

Overview
Journal Pflugers Arch
Specialty Physiology
Date 1985 May 1
PMID 3874390
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

According to a previous study from this laboratory, the electrochemical gradient for potassium across the peritubular cell membrane of proximal tubules in the isolated perfused frog kidney increases following the application of ouabain. In order to test, if this phenomenon were due to a decrease of potassium conductance, the effects of ouabain on cell membrane resistances and the sensitivity of the peritubular cell membrane potential difference (PDpt) to step changes of peritubular potassium and bicarbonate concentration were studied. In the absence of ouabain, PDpt averaged -60 +/- 3 mV (n = 25). A step increase of peritubular potassium concentration from 3 to 18 mmol/l (pH 8.07) depolarizes PDpt (delta PDk) by +24 +/- mV (n = 8). An increase of bicarbonate from 20 to 40 mmol/l (pH 8.07) hyperpolarizes PDpt (delta PDb) by -2.8 +/- 0.4 mV (n = 9). The resistance of the luminal and peritubular cell membranes in parallel (Rm) amounts to 45 +/- 9 k omega cm (tubule length) (n = 4) and the voltage divider ratio (VDR) to 1.4 +/- 0.2 (n = 7). The resistance of the cellular cable (cellular core, Rc) approaches 131 +/- 37 M omega/cm (n = 4). Peritubular application of 0.1 mmol/l ouabain leads to a gradual decline of PDpt (t1/2 approx. 30 min), to an increase of Rm, a decrease of delta PDk and an increase of delta PDb. VDR and Rc are not changed significantly. The data point to a functional link between the sodium/potassium ATPase and the potassium conductance of the peritubular cell membrane.

Citing Articles

Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na/K ATPase Activity in Dendritic Cells.

Hosseinzadeh Z, Singh Y, Shimshek D, van der Putten H, Wagner C, Lang F Sci Rep. 2017; 7:41117.

PMID: 28120865 PMC: 5264149. DOI: 10.1038/srep41117.


Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3.

Warsi J, Elvira B, Bissinger R, Hosseinzadeh Z, Lang F J Membr Biol. 2015; 248(6):1061-70.

PMID: 26100849 DOI: 10.1007/s00232-015-9817-6.


The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon.

Carra G, Ibanez J, Saravi F Dig Dis Sci. 2013; 58(9):2499-506.

PMID: 23695875 DOI: 10.1007/s10620-013-2711-0.


An intracellular ATP-activated, calcium-permeable conductance on the basolateral membrane of single renal proximal tubule cells isolated from Rana temporaria.

Robson L, Hunter M J Physiol. 2000; 523 Pt 2:301-11.

PMID: 10699076 PMC: 2269818. DOI: 10.1111/j.1469-7793.2000.00301.x.


Regulation of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule.

Mauerer U, Boulpaep E, Segal A J Gen Physiol. 1998; 111(1):161-80.

PMID: 9417142 PMC: 1887764. DOI: 10.1085/jgp.111.1.161.


References
1.
Schuurmans Stekhoven F, Bonting S . Transport adenosine triphosphatases: properties and functions. Physiol Rev. 1981; 61(1):1-76. DOI: 10.1152/physrev.1981.61.1.1. View

2.
Lang F, Messner G, Wang W, Paulmichl M, Oberleithner H, Deetjen P . The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney. Pflugers Arch. 1984; 401(1):14-21. DOI: 10.1007/BF00581527. View

3.
Messner G, Koller A, Lang F . The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells of the frog kidney. Pflugers Arch. 1985; 404(2):145-9. DOI: 10.1007/BF00585410. View

4.
Loewenstein W . Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981; 61(4):829-913. DOI: 10.1152/physrev.1981.61.4.829. View

5.
Fujimoto M, Kubota T . Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. Jpn J Physiol. 1976; 26(6):631-50. DOI: 10.2170/jjphysiol.26.631. View