6.
Capitani D, Brilli F, Mannina L, Proietti N, Loreto F
. In situ investigation of leaf water status by portable unilateral nuclear magnetic resonance. Plant Physiol. 2009; 149(4):1638-47.
PMC: 2663758.
DOI: 10.1104/pp.108.128884.
View
7.
Musse M, Hajjar G, Ali N, Billiot B, Joly G, Pepin J
. A global non-invasive methodology for the phenotyping of potato under water deficit conditions using imaging, physiological and molecular tools. Plant Methods. 2021; 17(1):81.
PMC: 8299642.
DOI: 10.1186/s13007-021-00771-0.
View
8.
Collewet G, Musse M, El Hajj C, Moussaoui S
. Multi-exponential MRI T2 maps: A tool to classify and characterize fruit tissues. Magn Reson Imaging. 2021; 87:119-132.
DOI: 10.1016/j.mri.2021.11.018.
View
9.
Hocq L, Pelloux J, Lefebvre V
. Connecting Homogalacturonan-Type Pectin Remodeling to Acid Growth. Trends Plant Sci. 2016; 22(1):20-29.
DOI: 10.1016/j.tplants.2016.10.009.
View
10.
Buckley T, John G, Scoffoni C, Sack L
. How Does Leaf Anatomy Influence Water Transport outside the Xylem?. Plant Physiol. 2015; 168(4):1616-35.
PMC: 4528767.
DOI: 10.1104/pp.15.00731.
View
11.
Sorin C, Musse M, Mariette F, Bouchereau A, Leport L
. Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence. Planta. 2014; 241(2):333-46.
DOI: 10.1007/s00425-014-2182-3.
View
12.
Boulch P, Clouet V, Niogret M, Avice J, Musse M, Leport L
. Leaf drought adaptive response in winter oilseed rape is altered at the onset of senescence: a study combining NMR relaxometry, multi-omics and microscopy. Physiol Plant. 2024; 176(4):e14454.
DOI: 10.1111/ppl.14454.
View
13.
Flexas J, Scoffoni C, Gago J, Sack L
. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot. 2013; 64(13):3965-81.
DOI: 10.1093/jxb/ert319.
View
14.
Colnago L, Wiesman Z, Pages G, Musse M, Monaretto T, Windt C
. Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. J Magn Reson. 2021; 323:106899.
DOI: 10.1016/j.jmr.2020.106899.
View
15.
Walter L, Balling A, Zimmermann U, Haase A, Kuhn W
. Nuclear-magnetic-resonance imaging of leaves ofMesembryanthemum crystallinum L. plants grown at high salinity. Planta. 2013; 178(4):524-30.
DOI: 10.1007/BF00963822.
View
16.
Sardans J, Penuelas J, Lope-Piedrafita S
. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging. BMC Plant Biol. 2010; 10:188.
PMC: 2956538.
DOI: 10.1186/1471-2229-10-188.
View
17.
Gupta M, Nath U
. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396. Plant Cell. 2015; 27(10):2785-99.
PMC: 4682314.
DOI: 10.1105/tpc.15.00196.
View
18.
Defraeye T, Derome D, Aregawi W, Cantre D, Hartmann S, Lehmann E
. Quantitative neutron imaging of water distribution, venation network and sap flow in leaves. Planta. 2014; 240(2):423-36.
DOI: 10.1007/s00425-014-2093-3.
View
19.
Cosgrove D
. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot. 2015; 67(2):463-76.
DOI: 10.1093/jxb/erv511.
View
20.
Blonder B, De Carlo F, Moore J, Rivers M, Enquist B
. X-ray imaging of leaf venation networks. New Phytol. 2012; 196(4):1274-1282.
DOI: 10.1111/j.1469-8137.2012.04355.x.
View