Identification of Clinically Relevant T Cell Receptors for Personalized T Cell Therapy Using Combinatorial Algorithms
Overview
Authors
Affiliations
A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.
Kuilman T, Schrikkema D, Gadiot J, Gomez-Eerland R, Bies L, Walker J Nat Commun. 2025; 16(1):649.
PMID: 39809767 PMC: 11733228. DOI: 10.1038/s41467-024-55420-6.
Engineered Cellular Therapies for the Treatment of Thoracic Cancers.
Erickson S, Manning B, Kumar A, Patel M Cancers (Basel). 2025; 17(1.
PMID: 39796666 PMC: 11718842. DOI: 10.3390/cancers17010035.
Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies.
Lin P, Lin Y, Mai Z, Zheng Y, Zheng J, Zhou Z Theranostics. 2025; 15(1):300-323.
PMID: 39744228 PMC: 11667231. DOI: 10.7150/thno.104594.
Predicting Antigen-Specificities of Orphan T Cell Receptors from Cancer Patients with TCRpcDist.
Perez M, Chiffelle J, Bobisse S, Mayol-Rullan F, Bugnon M, Bragina M Adv Sci (Weinh). 2024; 11(40):e2405949.
PMID: 39159239 PMC: 11516110. DOI: 10.1002/advs.202405949.