6.
Vizcaino J, Csordas A, Del-Toro N, Dianes J, Griss J, Lavidas I
. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015; 44(D1):D447-56.
PMC: 4702828.
DOI: 10.1093/nar/gkv1145.
View
7.
Jin Y, Zhou J, Zhou J, Hu M, Zhang Q, Kong N
. Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status. Biol Direct. 2020; 15(1):6.
PMC: 7057466.
DOI: 10.1186/s13062-020-0258-5.
View
8.
Rost H, Rosenberger G, Navarro P, Gillet L, Miladinovic S, Schubert O
. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 2014; 32(3):219-23.
DOI: 10.1038/nbt.2841.
View
9.
Marciano B, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S
. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2014; 60(8):1176-83.
PMC: 4400412.
DOI: 10.1093/cid/ciu1154.
View
10.
Scott N, Parker B, Connolly A, Paulech J, Edwards A, Crossett B
. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of.... Mol Cell Proteomics. 2010; 10(2):M000031-MCP201.
PMC: 3033663.
DOI: 10.1074/mcp.M000031-MCP201.
View
11.
Jervis A, Butler J, Lawson A, Langdon R, Wren B, Linton D
. Characterization of the structurally diverse N-linked glycans of Campylobacter species. J Bacteriol. 2012; 194(9):2355-62.
PMC: 3347071.
DOI: 10.1128/JB.00042-12.
View
12.
Sajjan U, Corey M, Humar A, Tullis E, Cutz E, Ackerley C
. Immunolocalisation of Burkholderia cepacia in the lungs of cystic fibrosis patients. J Med Microbiol. 2001; 50(6):535-546.
DOI: 10.1099/0022-1317-50-6-535.
View
13.
Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma J
. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol. 2009; 59(Pt 1):102-11.
DOI: 10.1099/ijs.0.001123-0.
View
14.
Scott N, Hare N, White M, Manos J, Cordwell S
. Secretome of transmissible Pseudomonas aeruginosa AES-1R grown in a cystic fibrosis lung-like environment. J Proteome Res. 2013; 12(12):5357-69.
DOI: 10.1021/pr4007365.
View
15.
Flannagan R, Linn T, Valvano M
. A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. Environ Microbiol. 2008; 10(6):1652-60.
DOI: 10.1111/j.1462-2920.2008.01576.x.
View
16.
Koomey M
. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol. 2019; 56:198-203.
DOI: 10.1016/j.sbi.2019.03.020.
View
17.
Anonsen J, Vik A, Borud B, Viburiene R, Aas F, Kidd S
. Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J Bacteriol. 2015; 198(2):256-67.
PMC: 4751800.
DOI: 10.1128/JB.00620-15.
View
18.
Saleh S, Staes A, Deborggraeve S, Gevaert K
. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics. 2019; 19(16):e1800435.
DOI: 10.1002/pmic.201800435.
View
19.
Bekker-Jensen D, Bernhardt O, Hogrebe A, Martinez-Val A, Verbeke L, Gandhi T
. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun. 2020; 11(1):787.
PMC: 7005859.
DOI: 10.1038/s41467-020-14609-1.
View
20.
Semanjski M, Macek B
. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics. 2015; 13(2):139-56.
DOI: 10.1586/14789450.2016.1132168.
View