6.
Boligala G, Yang M, van Wunnik J, Pruitt K
. Nuclear Dishevelled: An enigmatic role in governing cell fate and Wnt signaling. Biochim Biophys Acta Mol Cell Res. 2022; 1869(10):119305.
DOI: 10.1016/j.bbamcr.2022.119305.
View
7.
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W
. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001; 105(4):533-45.
DOI: 10.1016/s0092-8674(01)00336-1.
View
8.
Hocevar B, Mou F, Rennolds J, Morris S, Cooper J, Howe P
. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J. 2003; 22(12):3084-94.
PMC: 162138.
DOI: 10.1093/emboj/cdg286.
View
9.
Sarate R, Chovatiya G, Ravi V, Khade B, Gupta S, Waghmare S
. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation. Stem Cells. 2016; 34(9):2407-17.
DOI: 10.1002/stem.2418.
View
10.
Chovatiya G, Sunkara R, Roy S, Godbole S, Waghmare S
. Context-dependent effect of sPLA-IIA induced proliferation on murine hair follicle stem cells and human epithelial cancer. EBioMedicine. 2019; 48:364-376.
PMC: 6838435.
DOI: 10.1016/j.ebiom.2019.08.053.
View
11.
Keyes B, Segal J, Heller E, Lien W, Chang C, Guo X
. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci U S A. 2013; 110(51):E4950-9.
PMC: 3870727.
DOI: 10.1073/pnas.1320301110.
View
12.
Lee S, Sada A, Zhang M, McDermitt D, Lu S, Kemphues K
. High Runx1 levels promote a reversible, more-differentiated cell state in hair-follicle stem cells during quiescence. Cell Rep. 2014; 6(3):499-513.
PMC: 4052453.
DOI: 10.1016/j.celrep.2013.12.039.
View
13.
Kandyba E, Kobielak K
. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling. Stem Cells. 2013; 32(4):886-901.
PMC: 4398394.
DOI: 10.1002/stem.1599.
View
14.
Xing F, Yi W, Miao F, Su M, Lei T
. Baicalin increases hair follicle development by increasing canonical Wnt/β‑catenin signaling and activating dermal papillar cells in mice. Int J Mol Med. 2018; 41(4):2079-2085.
PMC: 5810219.
DOI: 10.3892/ijmm.2018.3391.
View
15.
Millar S, Willert K, Salinas P, Roelink H, Nusse R, Sussman D
. WNT signaling in the control of hair growth and structure. Dev Biol. 1999; 207(1):133-49.
DOI: 10.1006/dbio.1998.9140.
View
16.
Fazili Z, Sun W, Mittelstaedt S, Cohen C, Xu X
. Disabled-2 inactivation is an early step in ovarian tumorigenicity. Oncogene. 1999; 18(20):3104-13.
DOI: 10.1038/sj.onc.1202649.
View
17.
Shen J, Hu L, Yang L, Zhang M, Sun W, Lu X
. Reversible acetylation modulates dishevelled-2 puncta formation in canonical Wnt signaling activation. Signal Transduct Target Ther. 2020; 5(1):115.
PMC: 7338394.
DOI: 10.1038/s41392-020-00229-0.
View
18.
Ito M, Kizawa K
. Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J Invest Dermatol. 2001; 116(6):956-63.
DOI: 10.1046/j.0022-202x.2001.01369.x.
View
19.
Greco V, Chen T, Rendl M, Schober M, Pasolli H, Stokes N
. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009; 4(2):155-69.
PMC: 2668200.
DOI: 10.1016/j.stem.2008.12.009.
View
20.
Chen C, Murray P, Jiang T, Plikus M, Chang Y, Lee O
. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J Invest Dermatol. 2014; 134(8):2086-2096.
PMC: 4102635.
DOI: 10.1038/jid.2014.139.
View