» Articles » PMID: 38698178

Oral Bacteria Relative Abundance in Faeces Increases Due to Gut Microbiota Depletion and is Linked with Patient Outcomes

Abstract

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.

Citing Articles

Correlating High-dimensional longitudinal microbial features with time-varying outcomes with FLORAL.

Fei T, Donovan V, Funnell T, Baichoo M, Waters N, Paredes J bioRxiv. 2025; .

PMID: 40027751 PMC: 11870566. DOI: 10.1101/2025.02.17.638558.


Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential.

Akagbosu C, McCauley K, Namasivayam S, Romero-Soto H, OBrien W, Bacorn M Gut Microbes. 2025; 17(1):2467833.

PMID: 39971742 PMC: 11845021. DOI: 10.1080/19490976.2025.2467833.


Changes in gut microbiota after gastric cancer surgery: a prospective longitudinal study.

He Y, Gao S, Jiang L, Yang J Front Oncol. 2025; 14:1533816.

PMID: 39911821 PMC: 11794085. DOI: 10.3389/fonc.2024.1533816.


The oral-gut microbiota axis: a link in cardiometabolic diseases.

Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y NPJ Biofilms Microbiomes. 2025; 11(1):11.

PMID: 39794340 PMC: 11723975. DOI: 10.1038/s41522-025-00646-5.


Oral inflammation and microbiome dysbiosis exacerbate chronic graft-versus-host disease.

Kambara Y, Fujiwara H, Yamamoto A, Gotoh K, Tsuji S, Kunihiro M Blood. 2024; 145(8):881-896.

PMID: 39693612 PMC: 11867138. DOI: 10.1182/blood.2024024540.


References
1.
Segata N, Haake S, Mannon P, Lemon K, Waldron L, Gevers D . Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012; 13(6):R42. PMC: 3446314. DOI: 10.1186/gb-2012-13-6-r42. View

2.
Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S . Ectopic colonization of oral bacteria in the intestine drives T1 cell induction and inflammation. Science. 2017; 358(6361):359-365. PMC: 5682622. DOI: 10.1126/science.aan4526. View

3.
Li B, Ge Y, Cheng L, Zeng B, Yu J, Peng X . Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int J Oral Sci. 2019; 11(1):10. PMC: 6399334. DOI: 10.1038/s41368-018-0043-9. View

4.
Kitamoto S, Nagao-Kitamoto H, Jiao Y, Gillilland 3rd M, Hayashi A, Imai J . The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell. 2020; 182(2):447-462.e14. PMC: 7414097. DOI: 10.1016/j.cell.2020.05.048. View

5.
Kitamoto S, Nagao-Kitamoto H, Hein R, Schmidt T, Kamada N . The Bacterial Connection between the Oral Cavity and the Gut Diseases. J Dent Res. 2020; 99(9):1021-1029. PMC: 7375741. DOI: 10.1177/0022034520924633. View