6.
Desai N
. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012; 14(2):282-95.
PMC: 3326161.
DOI: 10.1208/s12248-012-9339-4.
View
7.
Ross A, Munoz M, Rotstein B, Suuronen E, Alarcon E
. A low cost and open access system for rapid synthesis of large volumes of gold and silver nanoparticles. Sci Rep. 2021; 11(1):5420.
PMC: 7940392.
DOI: 10.1038/s41598-021-84896-1.
View
8.
Pukkella A, Nadimpalli N, Runkana V, Subramanian S
. A novel spiral infinity reactor for continuous hydrothermal synthesis of nanoparticles. Sci Rep. 2022; 12(1):8616.
PMC: 9124214.
DOI: 10.1038/s41598-022-11141-8.
View
9.
Tsunoyama H, Ichikuni N, Tsukuda T
. Microfluidic synthesis and catalytic application of PVP-stabilized, approximately 1 nm gold clusters. Langmuir. 2008; 24(20):11327-30.
DOI: 10.1021/la801372j.
View
10.
Negishi Y, Shimizu N, Funai K, Kaneko R, Wakamatsu K, Harasawa A
. γ-Alumina-supported Pt cluster: controlled loading, geometrical structure, and size-specific catalytic activity for carbon monoxide and propylene oxidation. Nanoscale Adv. 2022; 2(2):669-678.
PMC: 9417680.
DOI: 10.1039/c9na00579j.
View
11.
Lignos I, Maceiczyk R, deMello A
. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Acc Chem Res. 2017; 50(5):1248-1257.
DOI: 10.1021/acs.accounts.7b00088.
View
12.
Wei J, Marchal R, Astruc D, Kahlal S, Halet J, Saillard J
. Looking at platinum carbonyl nanoclusters as . Nanoscale. 2022; 14(10):3946-3957.
DOI: 10.1039/d1nr08216g.
View
13.
Wettergren K, Schweinberger F, Deiana D, Ridge C, Crampton A, Rotzer M
. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening. Nano Lett. 2014; 14(10):5803-9.
DOI: 10.1021/nl502686u.
View
14.
Kawawaki T, Mitomi Y, Nishi N, Kurosaki R, Oiwa K, Tanaka T
. Pt nanocluster electrocatalysts: preparation and origin of high oxygen reduction reaction activity. Nanoscale. 2023; 15(16):7272-7279.
DOI: 10.1039/d3nr01152f.
View
15.
Minamihara H, Kusada K, Wu D, Yamamoto T, Toriyama T, Matsumura S
. Continuous-Flow Reactor Synthesis for Homogeneous 1 nm-Sized Extremely Small High-Entropy Alloy Nanoparticles. J Am Chem Soc. 2022; 144(26):11525-11529.
DOI: 10.1021/jacs.2c02755.
View
16.
de Silva N, Dahl L
. Synthesis and structural analysis of the first nanosized platinum-gold carbonyl/phosphine cluster, Pt13[Au2(PPh3)2]2(CO)10(PPh3)4, containing a Pt-centered [Ph3PAu-AuPPh3]-capped icosahedral Pt12 cage. Inorg Chem. 2005; 44(26):9604-6.
DOI: 10.1021/ic050990v.
View
17.
Garlyyev B, Kratzl K, Ruck M, Michalicka J, Fichtner J, Macak J
. Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angew Chem Int Ed Engl. 2019; 58(28):9596-9600.
DOI: 10.1002/anie.201904492.
View
18.
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y
. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl. 2022; 61(31):e202205947.
DOI: 10.1002/anie.202205947.
View
19.
Wang X, Yin B, Jiang L, Yang C, Liu Y, Zou G
. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science. 2023; 381(6659):784-790.
DOI: 10.1126/science.adh2365.
View
20.
Ciabatti I, Femoni C, Iapalucci M, Longoni G, Lovato T, Zacchini S
. PPh3-derivatives of [Pt3n(CO)6n]2- (n = 2-6) Chini's clusters: syntheses, structures, and 31P NMR studies. Inorg Chem. 2013; 52(8):4384-95.
DOI: 10.1021/ic3025414.
View