6.
Delepierre G, Traeger H, Adamcik J, Cranston E, Weder C, Zoppe J
. Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals. Biomacromolecules. 2021; 22(8):3552-3564.
DOI: 10.1021/acs.biomac.1c00644.
View
7.
Heise K, Delepierre G, King A, Kostiainen M, Zoppe J, Weder C
. Chemical Modification of Reducing End-Groups in Cellulose Nanocrystals. Angew Chem Int Ed Engl. 2020; 60(1):66-87.
PMC: 7821002.
DOI: 10.1002/anie.202002433.
View
8.
Sewring T, Dijkstra M
. The effect of shape, polydispersity, charge, and fraction of crystallite bundles on the cholesteric pitch of cellulose nanocrystal suspensions. J Chem Phys. 2023; 159(19).
DOI: 10.1063/5.0167362.
View
9.
Lee H, Ahn H, Mun J, Lee Y, Kim M, Cho N
. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018; 556(7701):360-365.
DOI: 10.1038/s41586-018-0034-1.
View
10.
Lukach A, Therien-Aubin H, Querejeta-Fernandez A, Pitch N, Chauve G, Methot M
. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir. 2015; 31(18):5033-41.
DOI: 10.1021/acs.langmuir.5b00728.
View
11.
Yeom J, Yeom B, Chan H, Smith K, Dominguez-Medina S, Bahng J
. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat Mater. 2014; 14(1):66-72.
PMC: 4387888.
DOI: 10.1038/nmat4125.
View
12.
Frka-Petesic B, Parton T, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q
. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev. 2023; 123(23):12595-12756.
PMC: 10729353.
DOI: 10.1021/acs.chemrev.2c00836.
View
13.
Delepierre G, Eyley S, Thielemans W, Weder C, Cranston E, Zoppe J
. Patience is a virtue: self-assembly and physico-chemical properties of cellulose nanocrystal allomorphs. Nanoscale. 2020; 12(33):17480-17493.
DOI: 10.1039/d0nr04491a.
View
14.
Giese M, Blusch L, Khan M, MacLachlan M
. Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed Engl. 2014; 54(10):2888-910.
DOI: 10.1002/anie.201407141.
View
15.
Dussi S, Dijkstra M
. Entropy-driven formation of chiral nematic phases by computer simulations. Nat Commun. 2016; 7:11175.
PMC: 4832067.
DOI: 10.1038/ncomms11175.
View
16.
Revol J, Bradford H, Giasson J, Marchessault R, Gray D
. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992; 14(3):170-2.
DOI: 10.1016/s0141-8130(05)80008-x.
View
17.
Risteen B, Delepierre G, Srinivasarao M, Weder C, Russo P, Reichmanis E
. Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. Small. 2018; 14(46):e1802060.
DOI: 10.1002/smll.201802060.
View
18.
Zoppe J, Dupire A, Lachat T, Lemal P, Rodriguez-Lorenzo L, Petri-Fink A
. Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration. ACS Macro Lett. 2022; 6(9):892-897.
DOI: 10.1021/acsmacrolett.7b00383.
View
19.
Liu Y, Wu Z, Armstrong D, Wolosker H, Zheng Y
. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem. 2023; 7(5):355-373.
PMC: 10175202.
DOI: 10.1038/s41570-023-00476-z.
View
20.
Yang K, Puneet P, Chiu P, Ho R
. Well-Ordered Nanonetwork Metamaterials from Block Copolymer Templated Syntheses. Acc Chem Res. 2022; 55(15):2033-2042.
DOI: 10.1021/acs.accounts.2c00152.
View