» Articles » PMID: 38693584

Cuproptosis: Unveiling a New Frontier in Cancer Biology and Therapeutics

Overview
Publisher Biomed Central
Date 2024 May 1
PMID 38693584
Authors
Affiliations
Soon will be listed here.
Abstract

Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.

Citing Articles

Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches.

Wang W, Li T, Wu K Cell Death Discov. 2025; 11(1):93.

PMID: 40064873 PMC: 11894105. DOI: 10.1038/s41420-025-02376-1.


Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment.

Zhang Y, Yi S, Luan M Front Oncol. 2025; 15:1519119.

PMID: 39949740 PMC: 11821507. DOI: 10.3389/fonc.2025.1519119.


Neutrophil extracellular traps in tumor metabolism and microenvironment.

Liu Z, Dou Y, Lu C, Han R, He Y Biomark Res. 2025; 13(1):12.

PMID: 39849606 PMC: 11756210. DOI: 10.1186/s40364-025-00731-z.


Targeting regulated cell death pathways in cancers for effective treatment: a comprehensive review.

Saxena R, Welsh C, He Y Front Cell Dev Biol. 2024; 12:1462339.

PMID: 39620145 PMC: 11604647. DOI: 10.3389/fcell.2024.1462339.


Psychiatric Symptoms in Wilson's Disease-Consequence of Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways.

Gromadzka G, Antos A, Sorysz Z, Litwin T Int J Mol Sci. 2024; 25(22).

PMID: 39596417 PMC: 11595239. DOI: 10.3390/ijms252212354.


References
1.
Shanbhag V, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris M . Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2020; 1868(2):118893. PMC: 7779655. DOI: 10.1016/j.bbamcr.2020.118893. View

2.
Lagadinou E, Sach A, Callahan K, Rossi R, Neering S, Minhajuddin M . BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013; 12(3):329-41. PMC: 3595363. DOI: 10.1016/j.stem.2012.12.013. View

3.
Scheiber I, Mercer J, Dringen R . Metabolism and functions of copper in brain. Prog Neurobiol. 2014; 116:33-57. DOI: 10.1016/j.pneurobio.2014.01.002. View

4.
Huang J, Chaudhary R, Cohen A, Fink K, Goldlust S, Boockvar J . A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019; 142(3):537-544. DOI: 10.1007/s11060-019-03125-y. View

5.
Zhang X, Walke G, Horvath I, Kumar R, Blockhuys S, Holgersson S . Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc Natl Acad Sci U S A. 2022; 119(37):e2206905119. PMC: 9477392. DOI: 10.1073/pnas.2206905119. View