» Articles » PMID: 38693468

Artificial Intelligence in Interventional Radiology: State of the Art

Overview
Journal Eur Radiol Exp
Date 2024 May 1
PMID 38693468
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.Relevance statement Exploring AI's transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.Key points• AI adoption in IR is more complex compared to diagnostic radiology.• Current literature about AI in IR is in its early stages.• AI has the potential to revolutionise every aspect of IR.

Citing Articles

The Evolution of Vascular Interventional Radiology and Endovascular Surgery: An Overview of Recent Advances.

Szonyi A, Nyarady B, Mezzetto L, Dosa E J Clin Med. 2025; 14(3).

PMID: 39941610 PMC: 11818796. DOI: 10.3390/jcm14030939.


Machine learning prediction of hepatic encephalopathy for long-term survival after transjugular intrahepatic portosystemic shunt in acute variceal bleeding.

Liu D, Jia L, Zeng F, Zeng W, Qin G, Peng Q World J Gastroenterol. 2025; 31(4):100401.

PMID: 39877716 PMC: 11718638. DOI: 10.3748/wjg.v31.i4.100401.


Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model.

Yasaka K, Nomura T, Kamohara J, Hirakawa H, Kubo T, Kiryu S J Imaging Inform Med. 2024; .

PMID: 39673010 DOI: 10.1007/s10278-024-01370-w.


[Interventional radiology - Training and career opportunities].

Ullrich L, Uller W, Frisch A Radiologie (Heidelb). 2024; 65(1):47-51.

PMID: 39652225 PMC: 11739213. DOI: 10.1007/s00117-024-01382-1.


Revolutionizing Radiology With Artificial Intelligence.

Bhandari A Cureus. 2024; 16(10):e72646.

PMID: 39474591 PMC: 11521355. DOI: 10.7759/cureus.72646.


References
1.
Calandri M, Mauri G, Yevich S, Gazzera C, Basile D, Gatti M . Fusion Imaging and Virtual Navigation to Guide Percutaneous Thermal Ablation of Hepatocellular Carcinoma: A Review of the Literature. Cardiovasc Intervent Radiol. 2019; 42(5):639-647. DOI: 10.1007/s00270-019-02167-z. View

2.
Fritz J, U-Thainual P, Ungi T, Flammang A, Kathuria S, Fichtinger G . MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc Intervent Radiol. 2014; 37(6):1589-96. DOI: 10.1007/s00270-014-0885-2. View

3.
Monfardini L, Orsi F, Caserta R, Sallemi C, Della Vigna P, Bonomo G . Ultrasound and cone beam CT fusion for liver ablation: technical note. Int J Hyperthermia. 2018; 35(1):500-504. DOI: 10.1080/02656736.2018.1509237. View

4.
Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A . Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. 2014; 38(1):143-51. DOI: 10.1007/s00270-014-0897-y. View

5.
Nalepa J, Marcinkiewicz M, Kawulok M . Data Augmentation for Brain-Tumor Segmentation: A Review. Front Comput Neurosci. 2020; 13:83. PMC: 6917660. DOI: 10.3389/fncom.2019.00083. View