» Articles » PMID: 38682165

Validation of a Machine Learning Algorithm to Identify Pulmonary Vein Isolation During Ablation Procedures for the Treatment of Atrial Fibrillation: Results of the PVISION Study

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Aims: Pulmonary vein isolation (PVI) is the cornerstone of ablation for atrial fibrillation. Confirmation of PVI can be challenging due to the presence of far-field electrograms (EGMs) and sometimes requires additional pacing manoeuvres or mapping. This prospective multicentre study assessed the agreement between a previously trained automated algorithm designed to determine vein isolation status with expert opinion in a real-world clinical setting.

Methods And Results: Consecutive patients scheduled for PVI were recruited at four centres. The ECGenius electrophysiology (EP) recording system (CathVision ApS, Copenhagen, Denmark) was connected in parallel with the existing system in the laboratory. Electrograms from a circular mapping catheter were annotated during sinus rhythm at baseline pre-ablation, time of isolation, and post-ablation. The ground truth for isolation status was based on operator opinion. The algorithm was applied to the collected PV signals off-line and compared with expert opinion. The primary endpoint was a sensitivity and specificity exceeding 80%. Overall, 498 EGMs (248 at baseline and 250 at PVI) with 5473 individual PV beats from 89 patients (32 females, 62 ± 12 years) were analysed. The algorithm performance reached an area under the curve (AUC) of 92% and met the primary study endpoint with a sensitivity and specificity of 86 and 87%, respectively (P = 0.005; P = 0.004). The algorithm had an accuracy rate of 87% in classifying the time of isolation.

Conclusion: This study validated an automated algorithm using machine learning to assess the isolation status of pulmonary veins in patients undergoing PVI with different ablation modalities. The algorithm reached an AUC of 92%, with both sensitivity and specificity exceeding the primary study endpoints.

References
1.
Wilber D, Pappone C, Neuzil P, de Paola A, Marchlinski F, Natale A . Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010; 303(4):333-40. DOI: 10.1001/jama.2009.2029. View

2.
Reddy V, Sediva L, Petru J, Skoda J, Chovanec M, Chitovova Z . Durability of Pulmonary Vein Isolation with Cryoballoon Ablation: Results from the Sustained PV Isolation with Arctic Front Advance (SUPIR) Study. J Cardiovasc Electrophysiol. 2015; 26(5):493-500. DOI: 10.1111/jce.12626. View

3.
Sroubek J, Rottmann M, Barkagan M, Leshem E, Shapira-Daniels A, Brem E . A novel octaray multielectrode catheter for high-resolution atrial mapping: Electrogram characterization and utility for mapping ablation gaps. J Cardiovasc Electrophysiol. 2019; 30(5):749-757. DOI: 10.1111/jce.13867. View

4.
Dukkipati S, Neuzil P, Kautzner J, Petru J, Wichterle D, Skoda J . The durability of pulmonary vein isolation using the visually guided laser balloon catheter: multicenter results of pulmonary vein remapping studies. Heart Rhythm. 2012; 9(6):919-25. DOI: 10.1016/j.hrthm.2012.01.019. View

5.
Schlageter V, Badertscher P, Luca A, Krisai P, Spies F, Kueffer T . A single-beat algorithm to discriminate farfield from nearfield bipolar voltage electrograms from the pulmonary veins. J Interv Card Electrophysiol. 2023; 66(9):2047-2054. PMC: 10694100. DOI: 10.1007/s10840-023-01535-7. View