6.
Keiser N, Birket S, Evans I, Tyler S, Crooke A, Sun X
. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol. 2014; 52(6):683-94.
PMC: 4491130.
DOI: 10.1165/rcmb.2014-0250OC.
View
7.
Britto C, Ratjen F, Clancy J
. Emerging Approaches to Monitor and Modify Care in the Era of Cystic Fibrosis Transmembrane Conductance Regulators. Clin Chest Med. 2022; 43(4):631-646.
DOI: 10.1016/j.ccm.2022.06.006.
View
8.
Leung H, Birket S, Hyun C, Ford T, Cui D, Solomon G
. Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies. Sci Transl Med. 2019; 11(504).
PMC: 6886258.
DOI: 10.1126/scitranslmed.aav3505.
View
9.
Nichols D, Paynter A, Heltshe S, Donaldson S, Frederick C, Freedman S
. Clinical Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: A Clinical Trial. Am J Respir Crit Care Med. 2021; 205(5):529-539.
PMC: 8906485.
DOI: 10.1164/rccm.202108-1986OC.
View
10.
Hoegger M, Fischer A, McMenimen J, Ostedgaard L, Tucker A, Awadalla M
. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014; 345(6198):818-22.
PMC: 4346163.
DOI: 10.1126/science.1255825.
View
11.
Markovetz M, Garbarine I, Morrison C, Kissner W, Seim I, Gregory Forest M
. Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. J Cyst Fibros. 2022; 21(6):959-966.
DOI: 10.1016/j.jcf.2022.04.008.
View
12.
Batson B, Zorn B, Radicioni G, Livengood S, Kumagai T, Dang H
. Cystic Fibrosis Airway Mucus Hyperconcentration Produces a Vicious Cycle of Mucin, Pathogen, and Inflammatory Interactions that Promotes Disease Persistence. Am J Respir Cell Mol Biol. 2022; 67(2):253-265.
PMC: 9348562.
DOI: 10.1165/rcmb.2021-0359OC.
View
13.
Regard L, Martin C, Burnet E, Da Silva J, Burgel P
. CFTR Modulators in People with Cystic Fibrosis: Real-World Evidence in France. Cells. 2022; 11(11).
PMC: 9179538.
DOI: 10.3390/cells11111769.
View
14.
Pearson K, Mayer-Hamblett N, Goss C, Retsch-Bogart G, Vandalfsen J, Burks P
. The impact of SARS-CoV-2 on the cystic fibrosis foundation therapeutics development network. J Cyst Fibros. 2020; 20(2):195-197.
PMC: 7834129.
DOI: 10.1016/j.jcf.2020.12.007.
View
15.
LeGrys V, Yankaskas J, Quittell L, Marshall B, Mogayzel Jr P
. Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr. 2007; 151(1):85-9.
DOI: 10.1016/j.jpeds.2007.03.002.
View
16.
Hisert K, Heltshe S, Pope C, Jorth P, Wu X, Edwards R
. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am J Respir Crit Care Med. 2017; 195(12):1617-1628.
PMC: 5476912.
DOI: 10.1164/rccm.201609-1954OC.
View
17.
Heijerman H, McKone E, Downey D, Van Braeckel E, Rowe S, Tullis E
. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019; 394(10212):1940-1948.
PMC: 7571408.
DOI: 10.1016/S0140-6736(19)32597-8.
View
18.
Ma J, Tang C, Kang L, Voynow J, Rubin B
. Cystic Fibrosis Sputum Rheology Correlates With Both Acute and Longitudinal Changes in Lung Function. Chest. 2018; 154(2):370-377.
DOI: 10.1016/j.chest.2018.03.005.
View
19.
Donaldson S, Laube B, Corcoran T, Bhambhvani P, Zeman K, Ceppe A
. Effect of ivacaftor on mucociliary clearance and clinical outcomes in cystic fibrosis patients with G551D-CFTR. JCI Insight. 2018; 3(24).
PMC: 6338313.
DOI: 10.1172/jci.insight.122695.
View
20.
Nichols D, Morgan S, Skalland M, Vo A, Van Dalfsen J, Singh S
. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest. 2023; 133(10).
PMC: 10178839.
DOI: 10.1172/JCI167957.
View