6.
Liu P, Blet A, Smyth D, Li H
. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation. 2020; 142(1):68-78.
DOI: 10.1161/CIRCULATIONAHA.120.047549.
View
7.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y
. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506.
PMC: 7159299.
DOI: 10.1016/S0140-6736(20)30183-5.
View
8.
Leisman D, Ronner L, Pinotti R, Taylor M, Sinha P, Calfee C
. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020; 8(12):1233-1244.
PMC: 7567529.
DOI: 10.1016/S2213-2600(20)30404-5.
View
9.
Jeschke M, Gauglitz G, Finnerty C, Kraft R, Mlcak R, Herndon D
. Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg. 2013; 259(4):814-23.
PMC: 3732513.
DOI: 10.1097/SLA.0b013e31828dfbf1.
View
10.
Attaway A, Scheraga R, Bhimraj A, Biehl M, Hatipoglu U
. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ. 2021; 372:n436.
DOI: 10.1136/bmj.n436.
View
11.
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z
. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020; 181(4):894-904.e9.
PMC: 7144619.
DOI: 10.1016/j.cell.2020.03.045.
View
12.
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H
. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581(7807):221-224.
PMC: 7328981.
DOI: 10.1038/s41586-020-2179-y.
View
13.
Abdel-Hafez N, Saleh Hassan Y, El-Metwally T
. A study on biomarkers, cytokines, and growth factors in children with burn injuries. Ann Burns Fire Disasters. 2011; 20(2):89-100.
PMC: 3188064.
View
14.
Al-Benna S
. Inflammatory and coagulative pathophysiology for the management of burn patients with COVID-19: systematic review of the evidence. Ann Burns Fire Disasters. 2021; 34(1):3-9.
PMC: 8126364.
View
15.
Bao R, Hernandez K, Huang L, Luke J
. and expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19. J Immunother Cancer. 2020; 8(2).
PMC: 7372174.
DOI: 10.1136/jitc-2020-001020.
View
16.
Lei S, Jiang F, Su W, Chen C, Chen J, Mei W
. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine. 2020; 21:100331.
PMC: 7128617.
DOI: 10.1016/j.eclinm.2020.100331.
View
17.
Ma D, Chen C, Jhanji V, Xu C, Yuan X, Liang J
. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye (Lond). 2020; 34(7):1212-1219.
PMC: 7205026.
DOI: 10.1038/s41433-020-0939-4.
View
18.
Bergquist M, Hastbacka J, Glaumann C, Freden F, Huss F, Lipcsey M
. The time-course of the inflammatory response to major burn injury and its relation to organ failure and outcome. Burns. 2018; 45(2):354-363.
DOI: 10.1016/j.burns.2018.09.001.
View
19.
Samavati L, Uhal B
. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020; 10:317.
PMC: 7294848.
DOI: 10.3389/fcimb.2020.00317.
View
20.
Bikdeli B, Madhavan M, Jimenez D, Chuich T, Dreyfus I, Driggin E
. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(23):2950-2973.
PMC: 7164881.
DOI: 10.1016/j.jacc.2020.04.031.
View