6.
Wang C, Wu Z, Cai H, Xu S, Liu J, Jiang J
. Design, synthesis, biological evaluation and docking study of 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors. Bioorg Med Chem Lett. 2015; 25(22):5212-6.
DOI: 10.1016/j.bmcl.2015.09.063.
View
7.
Terry Jr A, Buccafusco J
. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003; 306(3):821-7.
DOI: 10.1124/jpet.102.041616.
View
8.
Engel T, Gomez-Sintes R, Alves M, Jimenez-Mateos E, Fernandez-Nogales M, Sanz-Rodriguez A
. Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis. 2018; 9(10):969.
PMC: 6147910.
DOI: 10.1038/s41419-018-0963-5.
View
9.
Li X, Li T, Zhan F, Cheng F, Lu L, Zhang B
. Design, Synthesis, and Biological Evaluation of Novel Chromanone Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease. ACS Chem Neurosci. 2022; 13(23):3488-3501.
DOI: 10.1021/acschemneuro.2c00520.
View
10.
Morales-Garcia J, Luna-Medina R, Alonso-Gil S, Sanz-SanCristobal M, Palomo V, Gil C
. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci. 2012; 3(11):963-71.
PMC: 3503340.
DOI: 10.1021/cn300110c.
View
11.
Cortes-Gomez M, Llorens-Alvarez E, Alom J, Del Ser T, Avila J, Saez-Valero J
. Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. J Neurochem. 2020; 157(6):2091-2105.
PMC: 8359467.
DOI: 10.1111/jnc.15189.
View
12.
Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J
. Discovery of Novel Tacrine-Pyrimidone Hybrids as Potent Dual AChE/GSK-3 Inhibitors for the Treatment of Alzheimer's Disease. J Med Chem. 2021; 64(11):7483-7506.
DOI: 10.1021/acs.jmedchem.1c00160.
View
13.
Liu P, Xie Y, Meng X, Kang J
. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther. 2019; 4:29.
PMC: 6799833.
DOI: 10.1038/s41392-019-0063-8.
View
14.
Soeda Y, Yoshikawa M, Almeida O, Sumioka A, Maeda S, Osada H
. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat Commun. 2015; 6:10216.
PMC: 4703892.
DOI: 10.1038/ncomms10216.
View
15.
Benek O, Korabecny J, Soukup O
. A Perspective on Multi-target Drugs for Alzheimer's Disease. Trends Pharmacol Sci. 2020; 41(7):434-445.
DOI: 10.1016/j.tips.2020.04.008.
View
16.
Massoulie J, Bon S
. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982; 5:57-106.
DOI: 10.1146/annurev.ne.05.030182.000421.
View
17.
McHardy S, Wang H, McCowen S, Valdez M
. Recent advances in acetylcholinesterase Inhibitors and Reactivators: an update on the patent literature (2012-2015). Expert Opin Ther Pat. 2016; 27(4):455-476.
DOI: 10.1080/13543776.2017.1272571.
View
18.
Sang Z, Wang K, Dong J, Tang L
. Alzheimer's disease: Updated multi-targets therapeutics are in clinical and in progress. Eur J Med Chem. 2022; 238:114464.
DOI: 10.1016/j.ejmech.2022.114464.
View
19.
Chen Y
. Research Progress in the Pathogenesis of Alzheimer's Disease. Chin Med J (Engl). 2018; 131(13):1618-1624.
PMC: 6032682.
DOI: 10.4103/0366-6999.235112.
View
20.
Li Q, He S, Chen Y, Feng F, Qu W, Sun H
. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem. 2018; 158:463-477.
DOI: 10.1016/j.ejmech.2018.09.031.
View