6.
Saravanan S, Leena R, Selvamurugan N
. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016; 93(Pt B):1354-1365.
DOI: 10.1016/j.ijbiomac.2016.01.112.
View
7.
Li X, Wang L, Fan Y, Feng Q, Cui F, Watari F
. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 2013; 101(8):2424-35.
DOI: 10.1002/jbm.a.34539.
View
8.
Baptista R, Guedes M
. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng C Mater Biol Appl. 2020; 118:111528.
DOI: 10.1016/j.msec.2020.111528.
View
9.
Bhattacharjee P, Kundu B, Naskar D, Kim H, Maiti T, Bhattacharya D
. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater. 2017; 63:1-17.
DOI: 10.1016/j.actbio.2017.09.027.
View
10.
Chesnokov S, Aleynik D, Kovylin R, Yudin V, Egiazaryan T, Egorikhina M
. Porous Polymer Scaffolds based on Cross-Linked Poly-EGDMA and PLA: Manufacture, Antibiotics Encapsulation, and In Vitro Study. Macromol Biosci. 2021; 21(5):e2000402.
DOI: 10.1002/mabi.202000402.
View
11.
Gremare A, Guduric V, Bareille R, Heroguez V, Latour S, LHeureux N
. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2017; 106(4):887-894.
DOI: 10.1002/jbm.a.36289.
View
12.
Bian L, Hou C, Tous E, Rai R, Mauck R, Burdick J
. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials. 2012; 34(2):413-21.
PMC: 3578381.
DOI: 10.1016/j.biomaterials.2012.09.052.
View
13.
Oryan A, Alidadi S, Moshiri A, Maffulli N
. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014; 9(1):18.
PMC: 3995444.
DOI: 10.1186/1749-799X-9-18.
View
14.
Minto B, Sprada A, Goncalves Neto J, de Alcantara B, de Sa Rocha T, Hespanha A
. Three-dimensional printed poly (L-lactide) and hydroxyapatite composite for reconstruction of critical bone defect in rabbits. Acta Cir Bras. 2021; 36(4):e360404.
PMC: 8148815.
DOI: 10.1590/ACB360404.
View
15.
Karageorgiou V, Kaplan D
. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26(27):5474-91.
DOI: 10.1016/j.biomaterials.2005.02.002.
View
16.
Pape H, Evans A, Kobbe P
. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010; 24 Suppl 1:S36-40.
DOI: 10.1097/BOT.0b013e3181cec4a1.
View
17.
Amiryaghoubi N, Fathi M, Noroozi Pesyan N, Samiei M, Barar J, Omidi Y
. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev. 2020; 40(5):1833-1870.
DOI: 10.1002/med.21672.
View
18.
Lei K, Zhu Q, Wang X, Xiao H, Zheng Z
. In Vitro and in Vivo Characterization of a Foam-Like Polyurethane Bone Adhesive for Promoting Bone Tissue Growth. ACS Biomater Sci Eng. 2021; 5(10):5489-5497.
DOI: 10.1021/acsbiomaterials.9b00918.
View
19.
Habibovic P
. Strategic Directions in Osteoinduction and Biomimetics. Tissue Eng Part A. 2017; 23(23-24):1295-1296.
DOI: 10.1089/ten.TEA.2017.0430.
View
20.
Choi W, Hwang K, Kwon H, Lee C, Kim C, Kim T
. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater Sci Eng C Mater Biol Appl. 2020; 110:110693.
DOI: 10.1016/j.msec.2020.110693.
View