6.
Brzakalski D, Sztorch B, Frydrych M, Pakula D, Dydek K, Kozera R
. Limonene Derivative of Spherosilicate as a Polylactide Modifier for Applications in 3D Printing Technology. Molecules. 2020; 25(24).
PMC: 7763661.
DOI: 10.3390/molecules25245882.
View
7.
Yang L, Pijuan-Galito S, Rho H, Vasilevich A, Eren A, Ge L
. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev. 2021; 121(8):4561-4677.
PMC: 8154331.
DOI: 10.1021/acs.chemrev.0c00752.
View
8.
Hook A, Anderson D, Langer R, Williams P, Davies M, Alexander M
. High throughput methods applied in biomaterial development and discovery. Biomaterials. 2009; 31(2):187-98.
DOI: 10.1016/j.biomaterials.2009.09.037.
View
9.
Sztorch B, Pakula D, Kustosz M, Romanczuk-Ruszuk E, Gabriel E, Przekop R
. The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO Composites Used in 3D Printing (FDM/FFF). Polymers (Basel). 2022; 14(24).
PMC: 9780993.
DOI: 10.3390/polym14245493.
View
10.
Rasselet D, Caro-Bretelle A, Taguet A, Lopez-Cuesta J
. Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing. Materials (Basel). 2019; 12(3).
PMC: 6384960.
DOI: 10.3390/ma12030485.
View
11.
Nagarajan V, Zhang K, Misra M, Mohanty A
. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS Appl Mater Interfaces. 2015; 7(21):11203-14.
DOI: 10.1021/acsami.5b01145.
View
12.
Brzakalski D, Przekop R, Sztorch B, Frydrych M, Pakula D, Jalbrzykowski M
. Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers-A Polypropylene Blends Case Study. Polymers (Basel). 2021; 13(13).
PMC: 8271478.
DOI: 10.3390/polym13132124.
View
13.
Przybyszewski B, Kozera R, Krawczyk Z, Boczkowska A, Dolatabadi A, Amer A
. A Wind Tunnel Experimental Study of Icing on NACA0012 Aircraft Airfoil with Silicon Compounds Modified Polyurethane Coatings. Materials (Basel). 2021; 14(19).
PMC: 8510011.
DOI: 10.3390/ma14195687.
View
14.
Aliotta L, Sciara L, Cinelli P, Canesi I, Lazzeri A
. Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers (Basel). 2022; 14(5).
PMC: 8912521.
DOI: 10.3390/polym14050977.
View
15.
Aliotta L, Vannozzi A, Canesi I, Cinelli P, Coltelli M, Lazzeri A
. Poly(lactic acid) (PLA)/Poly(butylene succinate-co-adipate) (PBSA) Compatibilized Binary Biobased Blends: Melt Fluidity, Morphological, Thermo-Mechanical and Micromechanical Analysis. Polymers (Basel). 2021; 13(2).
PMC: 7827856.
DOI: 10.3390/polym13020218.
View
16.
Mark J
. Some interesting things about polysiloxanes. Acc Chem Res. 2004; 37(12):946-53.
DOI: 10.1021/ar030279z.
View
17.
Shirai M, Grossmann M, Mali S, Yamashita F, Garcia P, Muller C
. Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym. 2012; 92(1):19-22.
DOI: 10.1016/j.carbpol.2012.09.038.
View
18.
Jeong J, Ayyoob M, Kim J, Nam S, Kim Y
. formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film. RSC Adv. 2022; 9(38):21748-21759.
PMC: 9066418.
DOI: 10.1039/c9ra03299a.
View
19.
Nazrin A, Sapuan S, Zuhri M
. Mechanical, Physical and Thermal Properties of Sugar Palm Nanocellulose Reinforced Thermoplastic Starch (TPS)/Poly (Lactic Acid) (PLA) Blend Bionanocomposites. Polymers (Basel). 2020; 12(10).
PMC: 7600171.
DOI: 10.3390/polym12102216.
View
20.
Echeverria C, Limon I, Munoz-Bonilla A, Fernandez-Garcia M, Lopez D
. Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers. Polymers (Basel). 2021; 13(17).
PMC: 8434155.
DOI: 10.3390/polym13172860.
View