6.
Baskin I, Palyulin V, Zefirov N
. Neural networks in building QSAR models. Methods Mol Biol. 2008; 458:137-58.
View
7.
Sorkun M, Khetan A, Er S
. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds. Sci Data. 2019; 6(1):143.
PMC: 6687799.
DOI: 10.1038/s41597-019-0151-1.
View
8.
Singh K, Gupta S, Rai P
. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicol Environ Saf. 2013; 95:221-33.
DOI: 10.1016/j.ecoenv.2013.05.017.
View
9.
Emmert-Streib F, Yli-Harja O, Dehmer M
. Artificial Intelligence: A Clarification of Misconceptions, Myths and Desired Status. Front Artif Intell. 2021; 3:524339.
PMC: 7944138.
DOI: 10.3389/frai.2020.524339.
View
10.
Willighagen E, Mayfield J, Alvarsson J, Berg A, Carlsson L, Jeliazkova N
. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. 2017; 9(1):33.
PMC: 5461230.
DOI: 10.1186/s13321-017-0220-4.
View
11.
Drgan V, Zuperl S, Vracko M, Como F, Novic M
. Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm. SAR QSAR Environ Res. 2016; 27(7):501-19.
DOI: 10.1080/1062936X.2016.1196388.
View
12.
Alzubaidi L, Zhang J, Humaidi A, Al-Dujaili A, Duan Y, Al-Shamma O
. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021; 8(1):53.
PMC: 8010506.
DOI: 10.1186/s40537-021-00444-8.
View
13.
Alexander D, Tropsha A, Winkler D
. Beware of R(2): Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J Chem Inf Model. 2015; 55(7):1316-22.
PMC: 4530125.
DOI: 10.1021/acs.jcim.5b00206.
View
14.
Muratov E, Bajorath J, Sheridan R, Tetko I, Filimonov D, Poroikov V
. QSAR without borders. Chem Soc Rev. 2020; 49(11):3525-3564.
PMC: 8008490.
DOI: 10.1039/d0cs00098a.
View
15.
Drgan V, Zuperl S, Vracko M, Cappelli C, Novic M
. CPANNatNIC software for counter-propagation neural network to assist in read-across. J Cheminform. 2017; 9(1):30.
PMC: 5440416.
DOI: 10.1186/s13321-017-0218-y.
View
16.
Minovski N, Zuperl S, Drgan V, Novic M
. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum euclidean distance space analysis: a case study. Anal Chim Acta. 2012; 759:28-42.
DOI: 10.1016/j.aca.2012.11.002.
View
17.
Tropsha A
. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol Inform. 2016; 29(6-7):476-88.
DOI: 10.1002/minf.201000061.
View
18.
Mazzatorta P, Benfenati E, Neagu C, Gini G
. Tuning neural and fuzzy-neural networks for toxicity modeling. J Chem Inf Comput Sci. 2003; 43(2):513-8.
DOI: 10.1021/ci025585q.
View
19.
Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M
. An Introductory Review of Deep Learning for Prediction Models With Big Data. Front Artif Intell. 2021; 3:4.
PMC: 7861305.
DOI: 10.3389/frai.2020.00004.
View
20.
Russom C, Bradbury S, Broderius S, Hammermeister D, Drummond R, Veith G
. Predicting modes of toxic action from chemical structure. Environ Toxicol Chem. 2013; 32(7):1441-2.
DOI: 10.1002/etc.2249.
View