6.
Ooe M, Rajamahendran R, Boediono A, Suzuki T
. Ultrasound-guided follicle aspiration and IVF in dairy cows treated with FSH after removal of the dominant follicle at different stages of the estrous cycle [corrected]. J Vet Med Sci. 1997; 59(5):371-6.
DOI: 10.1292/jvms.59.371.
View
7.
Seneda M, Zangirolamo A, Bergamo L, Morotti F
. Follicular wave synchronization prior to ovum pick-up. Theriogenology. 2020; 150:180-185.
DOI: 10.1016/j.theriogenology.2020.01.024.
View
8.
Otsuka F, McTavish K, Shimasaki S
. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 2011; 78(1):9-21.
PMC: 3051839.
DOI: 10.1002/mrd.21265.
View
9.
Varisanga M, Sumantri C, Murakami M, Fahrudin M, Suzuki T
. Morphological classification of the ovaries in relation to the subsequent oocyte quality for IVF-produced bovine embryos. Theriogenology. 2000; 50(7):1015-23.
DOI: 10.1016/s0093-691x(98)00204-0.
View
10.
Ealy A, Wooldridge L, McCoski S
. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci. 2019; 97(6):2555-2568.
PMC: 6541818.
DOI: 10.1093/jas/skz116.
View
11.
Wani N, Skidmore J
. Ultrasonographic-guided retrieval of cumulus oocyte complexes after super-stimulation in dromedary camel (Camelus dromedarius). Theriogenology. 2010; 74(3):436-42.
DOI: 10.1016/j.theriogenology.2010.02.026.
View
12.
Gimenes L, Ferraz M, Fantinato-Neto P, Chiaratti M, Mesquita L, Sa Filho M
. The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology. 2014; 83(3):385-93.
DOI: 10.1016/j.theriogenology.2014.09.030.
View
13.
Hansen P
. The incompletely fulfilled promise of embryo transfer in cattle-why aren't pregnancy rates greater and what can we do about it?. J Anim Sci. 2020; 98(11).
PMC: 7608916.
DOI: 10.1093/jas/skaa288.
View
14.
Sirard M, Richard F, Blondin P, Robert C
. Contribution of the oocyte to embryo quality. Theriogenology. 2005; 65(1):126-36.
DOI: 10.1016/j.theriogenology.2005.09.020.
View
15.
PINCUS G, Enzmann E
. THE COMPARATIVE BEHAVIOR OF MAMMALIAN EGGS IN VIVO AND IN VITRO : I. THE ACTIVATION OF OVARIAN EGGS. J Exp Med. 2009; 62(5):665-75.
PMC: 2133299.
DOI: 10.1084/jem.62.5.665.
View
16.
Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A
. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction. 2001; 121(3):447-54.
View
17.
Lodde V, Modina S, Galbusera C, Franciosi F, Luciano A
. Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol Reprod Dev. 2006; 74(6):740-9.
DOI: 10.1002/mrd.20639.
View
18.
Pioltine E, Machado M, Silveira J, Fontes P, Botigelli R, Quaglio A
. Can extracellular vesicles from bovine ovarian follicular fluid modulate the in-vitro oocyte meiosis progression similarly to the CNP-NPR2 system?. Theriogenology. 2020; 157:210-217.
DOI: 10.1016/j.theriogenology.2020.06.031.
View
19.
Benedetti C, Azari Dolatabad N, Fernandez Montoro A, Angel Velez D, Bogado Pascottini O, Pavani K
. 139 Effect of follicle characteristics on bovine embryo development. Reprod Fertil Dev. 2022; 34(2):307-308.
DOI: 10.1071/RDv34n2Ab139.
View
20.
Alam M, Lee J, Miyano T
. Inhibition of PDE3A sustains meiotic arrest and gap junction of bovine growing oocytes in in vitro growth culture. Theriogenology. 2018; 118:110-118.
DOI: 10.1016/j.theriogenology.2018.05.028.
View